
Bindel, Fall 2022 Matrix Computations

2022-09-06

1 Modeling floating point
The fact that normal floating point results have a relative error bounded
by ϵmach gives us a useful model for reasoning about floating point error.
We will refer to this as the “1 + δ” model. For example, suppose x is an
exactly-represented input to the Julia statement

1 z = 1-x*x

We can reason about the error in the computed ẑ as follows:

t1 = fl(x2) = x2(1 + δ1)

t2 = 1− t1 = (1− x2)

(
1− δ1x

2

1− x2

)
ẑ = fl(1− t1) = z

(
1− δ1x

2

1− x2

)
(1 + δ2)

≈ z

(
1− δ1x

2

1− x2
+ δ2

)
,

where |δ1|, |δ2| ≤ ϵmach. As before, we throw away the (tiny) term involving
δ1δ2. Note that if z is close to zero (i.e. if there is cancellation in the subtrac-
tion), then the model shows the result may have a large relative error.

1.1 First-order error analysis
Analysis in the 1+δ model quickly gets to be a sprawling mess of Greek letters
unless one is careful. A standard trick to get around this is to use first-order
error analysis in which we linearize all expressions involving roundoff errors.
In particular, we frequently use the approximations

(1 + δ1)(1 + δ2) ≈ 1 + δ1 + δ2

1/(1 + δ) ≈ 1− δ.

In general, we will resort to first-order analysis without comment. Those
students who think this is a sneaky trick to get around our lack of facility

Bindel, Fall 2022 Matrix Computations

with algebra1 may take comfort in the fact that if |δi| < ϵmach, then in double
precision ∣∣∣∣∣

n∏
i=1

(1 + δi)
N∏

i=n+1

(1 + δi)
−1

∣∣∣∣∣ < (1 + 1.03Nϵmach)

for N < 1014 (and a little further).

1.2 Shortcomings of the model
The 1 + δ model has two shortcomings. First, it is only valid for expressions
that involve normalized numbers — most notably, gradual underflow breaks
the model. Second, the model is sometimes pessimistic. Certain operations,
such as taking a difference between two numbers within a factor of 2 of
each other, multiplying or dividing by a factor of two2, or multiplying two
single-precision numbers into a double-precision result, are exact in floating
point. There are useful operations such as simulating extended precision
using ordinary floating point that rely on these more detailed properties of
the floating point system, and cannot be analyzed using just the 1+δ model.

2 Finding and fixing floating point problems
Floating point arithmetic is not the same as real arithmetic. Even simple
properties like associativity or distributivity of addition and multiplication
only hold approximately. Thus, some computations that look fine in exact
arithmetic can produce bad answers in floating point. What follows is a (very
incomplete) list of some of the ways in which programmers can go awry with
careless floating point programming.

2.1 Cancellation
If x̂ = x(1+ δ1) and ŷ = y(1+ δ2) are floating point approximations to x and
y that are very close, then fl(x̂ − ŷ) may be a poor approximation to x − y
due to cancellation. In some ways, the subtraction is blameless in this tail:
if x and y are close, then fl(x̂ − ŷ) = x̂ − ŷ, and the subtraction causes no

1Which it is.
2Assuming that the result does not overflow or produce a subnormal.

Bindel, Fall 2022 Matrix Computations

additional rounding error. Rather, the problem is with the approximation
error already present in x̂ and ŷ.

The standard example of loss of accuracy revealed through cancellation
is in the computation of the smaller root of a quadratic using the quadratic
formula, e.g.

x = 1−
√
1− z

for z small. Fortunately, some algebraic manipulation gives an equivalent
formula that does not suffer cancellation:

x =
(
1−

√
1− z

)(1 +
√
1− z

1 +
√
1− z

)
=

z

1 +
√
1− z

.

2.2 Sensitive subproblems
We often solve problems by breaking them into simpler subproblems. Un-
fortunately, it is easy to produce badly-conditioned subproblems as steps to
solving a well-conditioned problem. As a simple (if contrived) example, try
running the following Julia code:

1 function silly_sqrt(n=100)
2 x = 2.0
3 for k = 1:n
4 x = sqrt(x)
5 end
6 for k = 1:n
7 x = x^2
8 end
9 x

10 end

In exact arithmetic, this should produce 2, but what does it produce in
floating point? In fact, the first loop produces a correctly rounded result, but
the second loop represents the function x260 , which has a condition number
far greater than 1016 — and so all accuracy is lost.

2.3 Unstable recurrences
One of my favorite examples of this problem is the recurrence relation for
computing the integrals

En =

∫ 1

0

xnex−1 dx.

Bindel, Fall 2022 Matrix Computations

Integration by parts yields the recurrence

E0 = 1− 1/e

En = 1− nEn−1, n ≥ 1.

This looks benign enough at first glance: no single step of this recurrence
causes the error to explode. But each step amplifies the error somewhat,
resulting in an exponential growth in error3.

2.4 Undetected underflow
In Bayesian statistics, one sometimes computes ratios of long products. These
products may underflow individually, even when the final ratio is not far from
one. In the best case, the products will grow so tiny that they underflow to
zero, and the user may notice an infinity or NaN in the final result. In the
worst case, the underflowed results will produce nonzero subnormal numbers
with unexpectedly poor relative accuracy, and the final result will be wildly
inaccurate with no warning except for the (often ignored) underflow flag.

2.5 Bad branches
A NaN result is often a blessing in disguise: if you see an unexpected NaN,
at least you know something has gone wrong! But all comparisons involving
NaN are false, and so when a floating point result is used to compute a branch
condition and an unexpected NaN appears, the result can wreak havoc. As
an example, try out the following code in Julia with ‘0.0/0.0‘ as input.

1 function test_negative(x)
2 if x < 0.0
3 "$(x) is negative"
4 elseif x >= 0.0
5 "$(x) is non-negative"
6 else
7 "$(x) is ... uh..."
8 end
9 end

3Part of the reason that I like this example is that one can run the recurrence backward
to get very good results, based on the estimate En ≈ 1/(n+ 1) for n large.

Bindel, Fall 2022 Matrix Computations

3 Sums and dots
We already described a couple of floating point examples that involve eval-
uation of a fixed formula (e.g. computation of the roots of a quadratic). We
now turn to the analysis of some of the building blocks for linear algebraic
computations: sums and dot products.

3.1 Sums two ways
As an example of first-order error analysis, consider the following code to
compute a sum of the entries of a vector v:

1 s = 0
2 for k = 1:n
3 s += v[k]
4 end

Let ŝk denote the computed sum at step k of the loop; then we have

ŝ1 = v1

ŝk = (ŝk−1 + vk)(1 + δk), k > 1.

Running this forward gives

ŝ2 = (v1 + v2)(1 + δ2)

ŝ3 = ((v1 + v2)(1 + δ2) + v3)(1 + δ2)

and so on. Using first-order analysis, we have

ŝk ≈ (v1 + v2)

(
1 +

k∑
j=2

δj

)
+

k∑
l=3

vl

(
1 +

k∑
j=l

δj

)
,

and the difference between ŝk and the exact partial sum is then

ŝk − sk ≈
k∑

j=2

sjδj.

Using ∥v∥1 as a uniform bound on all the partial sums, we have

|ŝn − sn| ≲ (n− 1)ϵmach∥v∥2.

Bindel, Fall 2022 Matrix Computations

An alternate analysis, which is a useful prelude to analyses to come in-
volves writing an error recurrence. Taking the difference between ŝk and the
true partial sums sk, we have

e1 = 0

ek = ŝk − sk

= (ŝk−1 + vk)(1 + δk)− (sk−1 + vk)

= ek−1 + (ŝk−1 + vk)δk,

and ŝk−1 + vk = sk +O(ϵmach), so that

|ek| ≤ |ek−1|+ |sk|ϵmach +O(ϵ2mach).

Therefore,
|en| ≲ (n− 1)ϵmach∥v∥1,

which is the same bound we had before.

3.2 Backward error analysis for sums
In the previous subsection, we showed an error analysis for partial sums
leading to the expression:

ŝn ≈ (v1 + v2)

(
1 +

n∑
j=2

δj

)
+

n∑
l=3

vl

(
1 +

n∑
j=l

δj

)
.

We then proceded to aggregate all the rounding error terms in order to
estimate the error overall. As an alternative to aggregating the roundoff,
we can also treat the rounding errors as perturbations to the input variables
(the entries of v); that is, we write the computed sum as

ŝn =
n∑

j=1

v̂j

where
v̂j = vj(1 + ηj), where |ηj| ≲ (n+ 1− j)ϵmach.

This gives us a backward error formulation of the rounding: we have re-cast
the role of rounding error in terms of a perturbation to the input vector v.
In terms of the 1-norm, we have the relative error bound

∥v̂ − v∥1 ≲ nϵmach∥v∥1;

Bindel, Fall 2022 Matrix Computations

or we can replace n with n−1 by being a little more careful. Either way, what
we have shown is that the summation algorithm is backward stable, i.e. we
can ascribe the roundoff to a (normwise) small relative error with a bound
of Cϵmach where the constant C depends on the size n like some low-degree
polynomial.

Once we have a bound on the backward error, we can bound the for-
ward error via a condition number. That is, suppose we write the true and
perturbed sums as

s =
n∑

j=1

vj ŝ =
n∑

j=1

v̂j.

We want to know the relative error in ŝ via a normwise relative error bound
in v̂, which we can write as

|ŝ− s|
|s|

=
|
∑n

j=1(v̂j − vj)|
|s|

≤ ∥v̂ − v∥1
|s|

=
∥v∥1
|s|

∥v̂ − v∥1
∥v∥1

.

That is, ∥v∥1/|s| is the condition number for the summation problem, and
our backward stability analysis implies

|ŝ− s|
|s|

≤ ∥v∥1
|s|

nϵmach.

This is the general pattern we will see again in the future: our analysis con-
sists of a backward error computation that depends purely on the algorithm,
together with a condition number that depends purely on the problem. To-
gether, these give us forward error bounds.

3.3 Running error bounds for sums
In all the analysis of summation we have done so far, we ultimately simplified
our formulas by bounding some quantity in terms of ∥v∥1. This is nice for
algebra, but we lose some precision in the process. An alternative is to
compute a running error bound, i.e. augment the original calculation with
something that keeps track of the error estimates. We have already seen that
the error in the computations looks like

ŝn − sn =
n∑

j=2

sjδj +O(ϵ2mach),

Bindel, Fall 2022 Matrix Computations

and since sj and ŝj differ only by O(ϵmach) terms,

|ŝn − sn| ≲
n∑

j=2

|ŝj|ϵmach +O(ϵ2mach),

We are not worried about doing a rounding error analysis of our rounding
error analysis — in general, we care more about order of magnitude for
rounding error anyhow — so the following routine does an adequate job of
computing an (approximate) upper bound on the error in the summation:

1 s = 0.0
2 e = 0.0
3 for k = 1:n
4 s += v[k]
5 e += abs(s) * eps(Float64);
6 end

3.4 Compensated summation
We conclude our discussion of rounding analysis for summation with a com-
ment on the compensated summation algorithm of Kahan, which is not
amenable to straightforward 1 + δ analysis. The algorithm maintains the
partial sums not as a single variable s, but as an unevaluated sum of two
variables s and c:

1 s = 0.0
2 c = 0.0
3 for k = 1:n
4 y = v[i] - c
5 t = s + y
6 c = (t - s) - y # Key step
7 s = t
8 end

Where the error bound for ordinary summation is (n−1)ϵmach∥v∥1+O(ϵ2mach),
the error bound for compensated summation is 2ϵmach∥v∥1+O(ϵ2mach). More-
over, compensated summation is exact for adding up to 2k terms that are
within about 2p−k of each other in magnitude.

Nor is Kahan’s algorithm the end of the story! Higham’s Accuracy and
Stability of Numerical Methods devotes an entire chapter to summation meth-
ods, and there continue to be papers written on the topic. For our purposes,
though, we will wrap up here with two observations:

Bindel, Fall 2022 Matrix Computations

• Our initial analysis in the 1+δ model illustrates the general shape these
types of analyses take and how we can re-cast the effect of rounding
errors as a “backward error” that perturbs the inputs to an exact prob-
lem.

• The existence of algorithms like Kahan’s compensated summation method
should indicate that the backward-error-and-conditioning approach to
rounding analysis is hardly the end of the story. One could argue it is
hardly the beginning! But it is the approach we will be using for most
of the class.

3.5 Dot products
We now consider another example, this time involving a real dot product
computed by a loop of the form

1 dot = 0
2 for k = 1:n
3 dot += x[k]*y[k];
4 end

Unlike the simple summation we analyzed above, the dot product involves
two different sources of rounding errors: one from the summation, and one
from the product. As in the case of simple summations, it is convenient to
re-cast this error in terms of perturbations to the input. We could do this
all in one go, but since we have already spent so much time on summation,
let us instead do it in two steps. Let vk = xkyk; in floating point, we get
v̂k = vk(1+ηk) where |ηk| < ϵmach. Further, we have already done a backward
error analysis of summation to show that the additional error in summation
can be cast onto the summands, i.e. the floating point result is

∑
k ṽk where

ṽk = v̂k(1 +
n∑

j=min(2,n)

δj)(1 + ηk) +O(ϵ2mach)

= vk(1 + γk) +O(ϵ2mach)

where
|γk| = |ηk +

n∑
j=min(2,n)

δj| ≤ nϵmach.

Rewriting vk(1 + γk) as x̂kyk where x̂k = xk(1 + γk), we have that the com-
puted inner product yTx is equivalent to the exact inner product of yT x̂

Bindel, Fall 2022 Matrix Computations

where x̂ is an elementwise relatively accurate (to within nϵmach + O(ϵ2mach))
approximation to x.

A similar backward error analysis shows that computed matrix-matrix
products AB in general can be interpreted as ÂB where

|Â− A| < pϵmach|A|+O(ϵ2mach)

and p is the inner dimension of the product. Exactly what Â is depends not
only on the data, but also the loop order used in the multiply — since, as
we recall, the order of accumulation may vary from machine to machine de-
pending on what blocking is best suited to the cache! But the bound on the
backward error holds for all the common re-ordering4 And this backward er-
ror characterization, together with the type of sensitivity analysis for matrix
multiplication that we have already discussed, gives us a uniform framework
for obtaining forward error bounds for matrix-matrix muliplication; and the
same type of analysis will continue to dominate our discussion of rounding
errors as we move on to more complicated matrix computations.

3.6 Back-substitution
We now consider the floating point analysis of a standard back-substitution
algorithm for solving an upper triangular system

Uy = b.

To solve such a linear system, we process each row in turn in reverse order
to find the value of the corresponding entry of y. For example, for the 3-by-3
case with

U =

1 3 5
4 2

6

 , b =

 1
−12
12

Back substitution proceeds row-by-row:

Row 3: 6y3 = 12 (so y3 = 12/2 = 2)

Row 2: 4y2 + 2y3 = −12 (so y2 = (−12− 2y3)/4 = −4)

Row 1: y1 + 3y2 + 5y3 = 1 (so y1 = (1− 3y2 − 5y3)/1 = 3)
4For those of you who know about Strassen’s algorithm — it’s not backward stable,

alas.

Bindel, Fall 2022 Matrix Computations

More generally, we have

yi =

(
bi −

∑
j>i

uijyj

)
/uii.

In code, if we weren’t inclined to just write y=U\b, we might write this as
1 y = copy(b)
2 for i = n:-1:1
3 # Loop equivalent to y[i] -= dot(U[i,i+1:end], y[i+1:end])
4 for j = i+1:n
5 y[i] -= U[i,j]*y[j]
6 end
7 y[i] /= U[i,i]
8 end

If we evaluate this in floating point arithmetic as a dot product, subtrac-
tion, and division, we get that

ŷi =

(
bi −

∑
j>i

ûij ŷj

)
/uii · (1 + δ1)(1 + δ2)

where the ŷj terms are the previously-computed entries in the y vector, the
ûij terms are the uij with a (n− i−1)ϵmach backward error modification from
the dot product, the δ1 error is associated with the subtraction and the δ2
error is associated with the division. This in turn gives us that

ŷi =

(
bi −

∑
j>i

ûij ŷj

)
/ûii

where
ûii =

uii

(1 + δ1)(1 + δ2)
= uii(1− δ1 − δ2 +O(ϵ2mach)).

That is, we can recast the final subtraction and division as a relative per-
turbation of ≲ 2ϵmach to the diagonal. Putting everything together, we have
that

Û ŷ = b

where |Û − U | ≲ nϵmach|U |.

Bindel, Fall 2022 Matrix Computations

4 Error analysis for linear systems
We now discuss the sensitivity of linear systems to perturbations. This is
relevant for two reasons:

1. Our standard recipe for getting an error bound for a computed solution
in the presence of roundoff is to combine a backward error analysis
(involving only features of the algorithm) with a sensitivity analysis
(involving only features of the problem). We saw an example above: we
know that the standard back-substitution process results in a backward
error like nϵmach|U |, but what does that mean for solutions of the linear
system?

2. Even without rounding error, it is important to understand the sensi-
tivity of a problem to the input variables if the inputs are in any way
inaccurate (e.g. because they come from measurements).

We describe several different bounds that are useful in different contexts.

4.1 First-order analysis
We begin with a discussion of the first-order sensitivity analysis of the system

Ax = b.

Using our favored variational notation, we have the following relation between
perturbations to A and b and perturbations to x:

δAx+ Aδx = δb,

or, assuming A is invertible,

δx = A−1(δb− δAx).

We are interested in relative error, so we divide through by ∥x∥:

∥δx∥
∥x∥

≤ ∥A−1δb∥
∥x∥

+
∥A−1δAx∥

∥x∥

The first term is bounded by

∥A−1δb∥
∥x∥

≤ ∥A−1∥∥δb∥
∥x∥

= κ(A)
∥δb∥

∥A∥∥x∥
≤ κ(A)

∥δb∥
∥b∥

Bindel, Fall 2022 Matrix Computations

and the second term is bounded by

∥A−1δAx∥
∥x∥

≤ ∥A−1∥∥δA∥∥x∥
∥x∥

= κ(A)
∥δA∥
∥A∥

Putting everything together, we have

∥δx∥
∥x∥

≤ κ(A)

(
∥δA∥
∥A∥

+
∥δb∥
∥b∥

)
,

That is, the relative error in x is (to first order) bounded by the condition
number times the relative errors in A and b.

4.2 Beyond first order
What if we want to go beyond the first-order error analysis? Suppose that

Ax = b and Âx̂ = b̂.

Then (analogous to our previous manipulations),

(Â− A)x̂+ A(x̂− x) = b̂− b

from which we have

x̂− x = A−1
(
(b̂− b)− Ex̂

)
,

where E ≡ Â− A. Following the same algebra as before, we have

∥x̂− x∥
∥x∥

≤ κ(A)

(
∥E∥
∥A∥

∥x̂∥
∥x∥

+
∥b̂− b∥
∥b∥

)
.

Assuming ∥A−1∥∥E∥ < 1, a little additional algebra (left as an exercise to
the student) yields

∥x̂− x∥
∥x∥

≤ κ(A)

1− ∥A−1∥∥E∥

(
∥E∥
∥A∥

+
∥b̂− b∥
∥b∥

)
.

Is this an important improvement on the first order bound? Perhaps not,
for two reasons:

Bindel, Fall 2022 Matrix Computations

• One typically cares about the order of magnitude of possible error, not
the exact bound, and

• The first-order bound and the “true” bound only disagree when both
are probably pretty bad. When our house is in flames, our first priority
is not to gauge whether the garage will catch as well; rather, we want
to call the firefighters to put it out!

4.3 Componentwise relative bounds
What if we have more control over the perturbations than a simple bound
on the norms? For example, we might have a componentwise perturbation
bound

|δA| < ϵA|A| |δb| < ϵb|b|,
and neglecting O(ϵ2) terms, we obtain

|δx| ≤ |A−1| (ϵb|b|+ ϵA|A||x|) ≤ (ϵb + ϵA)|A−1||A||x|.

Taking any vector norm such that ∥ |x| ∥ = ∥x∥, we have

∥δx∥ ≤ (ϵ+ ϵ′)∥ |A−1| |A| ∥.

The quantity κrel(A) = ∥ |A−1| |A| ∥ is the componentwise relative condition
number (also known as the Skeel condition number).

4.4 Residual-based bounds
The residual for an approximate solution x̂ to the equation Ax = b is

r = Ax̂− b.

We can express much simpler error bounds in terms of the residual, using
the relation

x̂− x = A−1r;

taking norms immediately gives

∥x̂− x∥ ≤ ∥A−1∥∥r∥

and for any vector norm such that ∥ |x| ∥ = ∥x∥, we have

∥x̂− x∥ ≤ ∥ |A−1||r| ∥.

Bindel, Fall 2022 Matrix Computations

Note that we can re-cast a residual error as a backward error on A via the
relation (

A− rx̂T

∥x̂∥2

)
x̂ = b.

4.5 Shape of error
So far, we have only really discussed the magnitude of errors in a linear solve,
but it is worth taking a moment to consider the shape of the errors as well. In
particular, suppose that we want to solve Ax = b, and we have the singular
value decomposition

A = UΣV T .

If σn(A) ≪ σ1(A), then κ2 = σ1/σn ≫ q, and we expect a large error. But is
this the end of the story? Suppose that A satisfies

1 ≥ σ1 ≥ . . . ≥ σk ≥ C1 > C2 ≥ σk+1 ≥ . . . ≥ σn > 0.

where C1 ≫ C2. Let r = Ax̂− b, so that Ae = r where e = x̂− x. Then

e = A−1r = V Σ−1UT r = V Σ−1r̃ =
n∑

j=1

r̃j
σj

vj.

where ∥r̃∥ = ∥UT r∥ = ∥r∥. Split this as

e = e1 + e2

where we have a controlled piece

∥e1∥ =

∥∥∥∥∥
k∑

j=1

r̃j
σj

vj

∥∥∥∥∥ ≤ ∥r∥
C1

and a piece that may be large,

e2 =
n∑

j=k+1

r̃j
σj

vj.

Hence, backward stability implies that the error consists of a small part and
a part that lies in the “nearly-singular subspace” for the matrix.

	Modeling floating point
	First-order error analysis
	Shortcomings of the model

	Finding and fixing floating point problems
	Cancellation
	Sensitive subproblems
	Unstable recurrences
	Undetected underflow
	Bad branches

	Sums and dots
	Sums two ways
	Backward error analysis for sums
	Running error bounds for sums
	Compensated summation
	Dot products
	Back-substitution

	Error analysis for linear systems
	First-order analysis
	Beyond first order
	Componentwise relative bounds
	Residual-based bounds
	Shape of error

