
Bindel, Fall 2022 Matrix Computations

2022-08-30

1 Matrix algebra versus linear algebra
We share a philosophy about linear algebra: we think basis-

free, we write basis-free, but when the chips are down we close
the office door and compute with matrices like fury.

— Irving Kaplansky on the late Paul Halmos

Linear algebra is fundamentally about the structure of vector spaces and
linear maps between them. A matrix represents a linear map with respect
to some bases. Properties of the underlying linear map may be more or less
obvious via the matrix representation associated with a particular basis, and
much of matrix computations is about finding the right basis (or bases) to
make the properties of some linear map obvious. We also care about finding
changes of basis that are “nice” for numerical work.

In some cases, we care not only about the linear map a matrix represents,
but about the matrix itself. For example, the graph associated with a matrix
A ∈ Rn×n has vertices {1, . . . , n} and an edge (i, j) if aij 6= 0. Many of the
matrices we encounter in this class are special because of the structure of
the associated graph, which we usually interpret as the “shape” of a matrix
(diagonal, tridiagonal, upper triangular, etc). This structure is a property of
the matrix, and not the underlying linear transformation; change the bases
in an arbitrary way, and the graph changes completely. But identifying and
using special graph structures or matrix shapes is key to building efficient
numerical methods for all the major problems in numerical linear algebra.

In writing, we represent a matrix concretely as an array of numbers.
Inside the computer, a dense matrix representation is a two-dimensional array
data structure, usually ordered row-by-row or column-by-column in order
to accomodate the one-dimensional structure of computer memory address
spaces. While much of our work in the class will involve dense matrix layouts,
it is important to realize that there are other data structures! The “best”
representation for a matrix depends on the structure of the matrix and on
what we want to do with it. For example, many of the algorithms we will
discuss later in the course only require a black box function to multiply an
(abstract) matrix by a vector.

Bindel, Fall 2022 Matrix Computations

2 Dense matrix basics
There is one common data structure for dense vectors: we store the vector as
a sequential array of memory cells. In contrast, there are two common data
structures for general dense matrices. In MATLAB (and Fortran), matrices
are stored in column-major form. For example, an array of the first four
positive integers interpreted as a two-by-two column major matrix represents
the matrix [

1 3
2 4

]
.

The same array, when interpreted as a row-major matrix, represents[
1 2
3 4

]
.

Unless otherwise stated, we will assume all dense matrices are represented
in column-major form for this class. As we will see, this has some concrete
effects on the efficiency of different types of algorithms.

2.1 The BLAS
The Basic Linear Algebra Subroutines (BLAS) are a standard library inter-
face for manipulating dense vectors and matrices. There are three levels of
BLAS routines:

• Level 1: These routines act on vectors, and include operations such
scaling and dot products. For vectors of length n, they take O(n1)
time.

• Level 2: These routines act on a matrix and a vector, and include
operations such as matrix-vector multiplication and solution of trian-
gular systems of equations by back-substitution. For n × n matrices
and length n vectors, they take O(n2) time.

• Level 3: These routines act on pairs of matrices, and include opera-
tions such as matrix-matrix multiplication. For n × n matrices, they
take O(n3) time.

All of the BLAS routines are superficially equivalent to algorithms that can
be written with a few lines of code involving one, two, or three nested loops

Bindel, Fall 2022 Matrix Computations

(depending on the level of the routine). Indeed, except for some refinements
involving error checking and scaling for numerical stability, the reference
BLAS implementations involve nothing more than these basic loop nests.
But this simplicity is deceptive — a surprising amount of work goes into
producing high performance implementations.

2.2 Locality and memory
When we analyze algorithms, we often reason about their complexity ab-
stractly, in terms of the scaling of the number of operations required as
a function of problem size. In numerical algorithms, we typically measure
flops (short for floating point operations). For example, consider the loop to
compute the dot product of two vectors:

1 function mydot(x, y)
2 n = length(x)
3 result = 0.0
4 for i = 1:n
5 result += x[i]*y[i] # Two flops/iteration
6 end
7 result
8 end

Because it takes n additions and n multiplications, we say this code takes 2n
flops, or (a little more crudely) O(n) flops.

On modern machines, though, counting flops is at best a crude way to
reason about how run times scale with problem size. This is because in
many computations, the time to do arithmetic is dominated by the time to
fetch the data into the processor! A detailed discussion of modern memory
architectures is beyond the scope of these notes, but there are at least two
basic facts that everyone working with matrix computations should know:

• Memories are optimized for access patterns with spatial locality: it is
faster to access entries of memory that are close to each other (ideally
in sequential order) than to access memory entries that are far apart.
Beyond the memory system, sequential access patterns are good for vec-
torization, i.e. for scheduling work to be done in parallel on the vector
arithmetic units that are present on essentially all modern processors.

• Memories are optimized for access patterns with temporal locality; that
is, it is much faster to access a small amount of data repeatedly than
to access large amounts of data.

Bindel, Fall 2022 Matrix Computations

The main mechanism for optimizing access patterns with temporal lo-
cality is a system of caches, fast and (relatively) small memories that can
be accessed more quickly (i.e. with lower latency) than the main memory.
To effectively use the cache, it is helpful if the working set (memory that is
repeatedly accessed) is smaller than the cache size. For level 1 and 2 BLAS
routines, the amount of work is proportional to the amount of memory used,
and so it is difficult to take advantage of the cache. On the other hand, level
3 BLAS routines do O(n3) work with O(n2) data, and so it is possible for a
clever level 3 BLAS implementation to effectively use the cache.

2.3 Matrix-vector multiply
Let us start with a very simple Julia function for matrix-vector multiplication:

1 function matvec1_row(A, x)
2 m, n = size(A)
3 y = zeros(m)
4 for i = 1:m
5 for j = 1:n
6 y[i] += A[i,j]*x[j]
7 end
8 end
9 y

10 end

We could just as well have switched the order of the i and j loops to give us
a column-oriented rather than row-oriented version of the algorithm:

1 function matvec1_col(A, x)
2 m, n = size(A)
3 y = zeros(m)
4 for j = 1:n
5 for i = 1:m
6 y[i] += A[i,j]*x[j]
7 end
8 end
9 y

10 end

It’s not too surprising that the builtin matrix-vector multiply routine in
Julia runs faster than either of our matvec variants, but there are some other
surprises lurking. The Pluto notebook accompanying this lecture goes into
more detail.

Bindel, Fall 2022 Matrix Computations

2.4 Matrix-matrix multiply
The classic algorithm to compute C := C + AB involves three nested loops

1 function matmul!(A, B, C)
2 m, n = size(A)
3 n, p = size(B)
4 for i = 1:m
5 for j = 1:n
6 for k = 1:p
7 C[i,j] += A[i,k]*B[k,j]
8 end
9 end

10 end
11 end

This is sometimes called an inner product variant of the algorithm, because
the innermost loop is computing a dot product between a row of A and a
column of B. But addition is commutative and associative, so we can sum
the terms in a matrix-matrix product in any order and get the same result.
And we can interpret the orders! A non-exhaustive list is:

• ij(k) or ji(k): Compute entry cij as a product of row i from A and
column j from B (the inner product formulation)

• k(ij): C is a sum of outer products of column k of A and row k of B
for k from 1 to n (the outer product formulation)

• i(jk) or i(kj): Each row of C is a row of A multiplied by B

• j(ik) or j(ki): Each column of C is A multiplied by a column of B

At this point, we could write down all possible loop orderings and run a
timing experiment, similar to what we did with matrix-vector multiplication.
But the truth is that high-performance matrix-matrix multiplication routines
use another access pattern altogether, involving more than three nested loops,
and we will describe this now.

2.5 Blocking and performance
The basic matrix multiply outlined in the previous section will usually be at
least an order of magnitude slower than a well-tuned matrix multiplication
routine. There are several reasons for this lack of performance, but one of

Bindel, Fall 2022 Matrix Computations

the most important is that the basic algorithm makes poor use of the cache.
Modern chips can perform floating point arithmetic operations much more
quickly than they can fetch data from memory; and the way that the basic
algorithm is organized, we spend most of our time reading from memory
rather than actually doing useful computations. Caches are organized to
take advantage of spatial locality, or use of adjacent memory locations in a
short period of program execution; and temporal locality, or re-use of the
same memory location in a short period of program execution. The basic
matrix multiply organizations don’t do well with either of these. A better
organization would let us move some data into the cache and then do a lot
of arithmetic with that data. The key idea behind this better organization
is blocking.

When we looked at the inner product and outer product organizations
in the previous sections, we really were thinking about partitioning A and
B into rows and columns, respectively. For the inner product algorithm, we
wrote A in terms of rows and B in terms of columns

a1,:
a2,:
...

am,:

 [
b:,1 b:,2 · · · b:,n

]
,

and for the outer product algorithm, we wrote A in terms of colums and B
in terms of rows

[
a:,1 a:,2 · · · a:,p

]

b1,:
b2,:
...
bp,:

 .

Bindel, Fall 2022 Matrix Computations

More generally, though, we can think of writing A and B as block matrices:

A =

A11 A12 . . . A1,pb

A21 A22 . . . A2,pb...
Amb,1 Amb,2 . . . Amb,pb

B =

B11 B12 . . . B1,pb

B21 B22 . . . B2,pb...
Bpb,1 Bpb,2 . . . Bpb,nb

where the matrices Aij and Bjk are compatible for matrix multiplication.
Then we we can write the submatrices of C in terms of the submatrices of A
and B

Cij =
∑
k

AijBjk.

2.6 The lazy man’s approach to performance
An algorithm like matrix multiplication seems simple, but there is a lot
under the hood of a tuned implementation, much of which has to do with the
organization of memory. We often get the best “bang for our buck” by taking
the time to formulate our algorithms in block terms, so that we can spend
most of our computation inside someone else’s well-tuned matrix multiply
routine (or something similar). There are several implementations of the
Basic Linear Algebra Subroutines (BLAS), including some implementations
provided by hardware vendors and some automatically generated by tools
like ATLAS. The best BLAS library varies from platform to platform, but
by using a good BLAS library and writing routines that spend a lot of time
in level 3 BLAS operations (operations that perform O(n3) computation on
O(n2) data and can thus potentially get good cache re-use), we can hope to
build linear algebra codes that get good performance across many platforms.

This is also a good reason to use systems like Julia, MATLAB, or NumPy
(built appropriately): they uses pretty good BLAS libraries, and so you
can often get surprisingly good performance from it for the types of linear
algebraic computations we will pursue.

Bindel, Fall 2022 Matrix Computations

3 Matrix shapes and structures
In linear algebra, we talk about different matrix structures. For example:

• A ∈ Rn×n is nonsingular if the inverse exists; otherwise it is singular.

• Q ∈ Rn×n is orthogonal if QTQ = I.

• A ∈ Rn×n is symmetric if A = AT .

• S ∈ Rn×n is skew-symmetric if S = −ST .

• L ∈ Rn×m is low rank if L = UV T for U ∈ Rn×k and V ∈ Rm×k where
k � min(m,n).

These are properties of an underlying linear map or quadratic form; if we
write a different matrix associated with an (appropriately restricted) change
of basis, it will also have the same properties.

In matrix computations, we also talk about the shape (nonzero structure)
of a matrix. For example:

• D is diagonal if dij = 0 for i 6= j.

• T is tridiagonal if tij = 0 for i 6∈ {j − 1, j, j + 1}.

• U is upper triangular if uij = 0 for i > j and strictly upper triangular
if uij = 0 for i ≥ j (lower triangular and strictly lower triangular are
similarly defined).

• H is upper Hessenberg if hij = 0 for i > j + 1.

• B is banded if bij = 0 for |i− j| > β.

• S is sparse if most of the entries are zero. The position of the nonzero
entries in the matrix is called the sparsity structure.

We often represent the shape of a matrix by marking where the nonzero

Bindel, Fall 2022 Matrix Computations

elements are (usually leaving empty space for the zero elements); for example:

Diagonal

×

×
×

×
×

 Tridiagonal

× ×
× × ×

× × ×
× × ×

× ×

Triangular

× × × × ×

× × × ×
× × ×

× ×
×

 Hessenberg

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

We also sometimes talk about the graph of a (square) matrix A ∈ Rn×n:
if we assign a node to each index {1, . . . , n}, an edge (i, j) in the graph
corresponds to aij 6= 0. There is a close connection between certain classes
of graph algorithms and algorithms for factoring sparse matrices or working
with different matrix shapes. For example, the matrix A can be permuted so
that PAP T is upper triangular iff the associated directed graph is acyclic.

The shape of a matrix (or graph of a matrix) is not intrinsically associ-
ated with a more abstract linear algebra concept; apart from permutations,
sometimes, almost any change of basis will completely destroy the shape.

4 Sparse matrices
We say a matrix is sparse if the vast majority of the entries are zero. Because
we only need to explicitly keep track of the nonzero elements, sparse matrices
require less than O(n2) storage, and we can perform many operations more
cheaply with sparse matrices than with dense matrices. In general, the cost
to store a sparse matrix, and to multiply a sparse matrix by a vector, is
O(nnz(A)), where nnz(A) is the number of nonzeros in A.

Two specific classes of sparse matrices are such ubiquitous building blocks
that it is worth pulling them out for special attention. These are diagonal
matrices and permutation matrices. Many linear algebra libraries also have
support for banded matrices (and sometimes for generalizations such as sky-
line matrices). Matlab also provides explicit support for general sparse
matrices in which the nonzeros can appear in any position.

Bindel, Fall 2022 Matrix Computations

4.1 Diagonal matrices
A diagonal matrix is zero except for the entries on the diagonal. We often
associate a diagonal matrix with the vector of these entries, and we will adopt
in class the notational convention used in Matlab: the operator diag maps
a vector to the corresponding diagonal matrix, and maps a matrix to the
vector of diagonal entries. For example, for the vector and matrix

d =

d1d2
d3

D =

d1 d2
d3

we would write D = diag(d) and d = diag(D).

The Julia Diagonal type represents diagonal matrices.

4.2 Permutations
A permutation matrix is a 0-1 matrix in which one appears exactly once
in each row and column. We typically use P or Π to denote permutation
matrices; if there are two permutations in a single expression, we might use
P and Q.

A permutation matrix is so named because it permutes the entries of
a vector. As with diagonal matrices, it is usually best to work with per-
mutations implicitly in computational practice. For any given permutation
vector P , we can define an associated mapping vector p such that p(i) = j
iff Pij = 1. We can then apply the permutation to a vector or matrix using
Matlab’s indexing operations:

1 B = P*A # Straightforward, but slow if P is a dense rep'n
2 C = A*P'
3 B = A[p,:] # Better
4 C = A[:,p]

To apply a transpose permutation, we would usually use the permuted in-
dexing on the destination rather than the source:

1 y = P'*x # Implies that P*y = x
2 y[p] = x # Apply the transposed permutation via indexing

4.3 Narrowly banded matrices
If a matrix A has zero entries outside a narrow band near the diagonal, we
say that A is a banded matrix. More precisely, if aij = 0 for j < i − k1 or

Bindel, Fall 2022 Matrix Computations

j > i + k2, we say that A has lower bandwidth k1 and upper bandwidth k2.
The most common narrowly-banded matrices in matrix computations (other
than diagonal matrices) are tridiagonal matrices in which k1 = k2 = 1.

In the conventional storage layout for band matrices (used by LAPACK)
the nonzero entries for a band matrix A are stored in a packed storage matrix
B such that each column of B corresponds to a column of A and each row
of B corresponds to a nonzero (off-)diagonal of A. For example,

a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55

 7→

∗ a12 a23 a34 a45
a11 a22 a33 a44 a55
a21 a32 a43 a54 ∗
a31 a42 a53 ∗ ∗

Julia does not provide easy specialized support for band matrices (though
it is possible to access the band matrix routines if you are tricky). Instead,
the simplest way to work with narrowly banded matrices in Julia is to use a
general sparse representation.

4.4 General sparse matrices
For diagonal and band matrices, we are able to store nonzero matrix en-
tries explicitly, but (as with the dense matrix format) the locations of those
nonzero entries in the matrix are implicit. For permutation matrices, the
values of the nonzero entries are implicit (they are always one), but we must
store their positions explicitly. In a general sparse matrix format, we store
both the positions and the values of nonzero entries explicitly.

For input and output, Julia uses a coordinate format for sparse matrices
consisting of three parallel arrays (i, j, and aij). Each entry in the parallel
arrays represents a nonzero in the matrix with value aij(k) at row i(k) and
column j(k). For input, repeated entries with the same row and column are
allowed; in this case, all the entries for a given location are summed together
in the final matrix. This functionality is useful in some applications (e.g. for
assembling finite element matrices).

Internally, Julia’s sparse package uses a compressed sparse column format
for sparse matrices. In this format, the row position and value for each
nonzero are stored in parallel arrays, in column-major order (i.e. all the
elements of column k appear before elements of column k + 1). The column

Bindel, Fall 2022 Matrix Computations

positions are not stored explicitly for every element; instead, a pointer array
indicates the offset in the row and entry arrays of the start of the data for each
column; a pointer array entry at position n+1 indicates the total number of
nonzeros in the data structure.

The compressed sparse column format has some features that may not
be obvious at first:

• For very sparse matrices, multiplying a sparse format matrix by a vec-
tor is much faster than multiplying a dense format matrix by a vector
— but this is not true if a significant fraction of the matrix is nonze-
ros. The tradeoff depends on the matrix size and machine details, but
sparse matvecs will often have the same speed as — or even be slower
than — dense matvecs when the sparsity is above a few percent.

• Adding contributions into a sparse matrix is relatively slow, as each
sum requires recomputing the sparse indexing data structure and re-
allocating memory. To build up a sparse matrix as the sum of many
components, it is usually best to use the coordinate form first.

In general, though, the sparse matrix format has a great deal to recommend
it for genuinely sparse matrices. Matlab uses the sparse matrix format
not only for general sparse matrices, but also for the special case of banded
matrices.

5 Data-sparse matrices
A sparse matrix has mostly zero entries; this lets us design compact storage
formats with space proportional to the number of nonzeros, and fast matrix-
vector multiplication with time proportional to the number of nonzeros. A
data-sparse matrix can be described with far fewer than n2 parameters, even
if it is not sparse. Such matrices usually also admit compact storage schemes
and fast matrix-vector products. This is significant because many of the
iterative algorithms we describe later in the semester do not require any
particular representation of the matrix; they only require that we be able to
multiply by a vector quickly.

The study of various data sparse representations has blossomed into a
major field of study within matrix computations; in this section we give a
taste of a few of the most common types of data sparsity. We will see several
of these structures in model problems used over the course of the class.

Bindel, Fall 2022 Matrix Computations

5.1 (Nearly) low-rank matrices
The simplest and most common data-sparse matrices are low-rank matrices.
If A ∈ Rm×n has rank k, it can be written in outer product form as

A = UW T , , U ∈ Rm×k,W ∈ Rn×k.

This factored form has a storage cost of (n + m)k, a significant savings
over the mn cost of the dense representation in the case k � max(m,n). To
multiply a low-rank matrix by a vector fast, we need only to use associativity
of matrix operations

1 y = (U*V')*x # O(mn) storage, O(mnk) flops
2 y = U*(V'*x) # O((m+n) k) storage and flops

5.2 Circulant, Toeplitz, and Hankel structure
A Toeplitz matrix is a matrix in which each (off)-diagonal is constant, e.g.

A =

a0 a1 a2 a3
a−1 a0 a1 a2
a−2 a−1 a0 a1
a−3 a−2 a−1 a0

 .

Toeplitz matrices play a central role in the theory of constant-coefficient finite
difference equations and in many applications in signal processing.

Multiplication of a Toeplitz matrix by a vector represents (part of) a
convolution; and afficionados of Fourier analysis and signal processing may
already know that this implies that matrix multiplication can be done in
O(n log n) time using a discrete Fourier transforms. The trick to this is to
view the Toeplitz matrix as a block in a larger circulant matrix

C =

a0 a1 a2 a3 a−3 a−2 a−1

a−1 a0 a1 a2 a3 a−3 a−2

a−2 a−1 a0 a1 a2 a3 a−3

a−3 a−2 a−1 a0 a1 a2 a3
a3 a−3 a−2 a−1 a0 a1 a2
a2 a3 a−3 a−2 a−1 a0 a1
a1 a2 a3 a−3 a−2 a−1 a0

=

3∑
k=−3

a−kP
k,

Bindel, Fall 2022 Matrix Computations

where P is the cyclic permutation matrix

P =

0 0 . . . 0 1
1 0

1 0
.

1 0

 .

As we will see later in the course, the discrete Fourier transform matrix is
the eigenvector matrix for this cyclic permutation, and this is a gateway to
fast matrix-vector multiplication algorithms.

Closely-related to Toeplitz matrices are Hankel matrices, which are con-
stant on skew-diagonals (that is, they are Toeplitz matrices flipped upside
down). Hankel matrices appear in numerous applications in control theory.

5.3 Separability and Kronecker product structure
The Kronecker product A ⊗ B ∈ R(mp)×(nq) of matrices A ∈ Rm×n and B ∈
Rp×q is the (gigantic) matrix

A⊗ B =

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
am1B am2B . . . amnB

 .

Multiplication of a vector by a Kronecker product represents a matrix triple
product:

(A⊗ B) vec(X) = vec(BXAT)

where vec(X) represents the vector formed by listing the elements of a matrix
in column major order, e.g.

vec

[
1 3
2 4

]
=

1
2
3
4

 .

Kronecker product structure appears often in control theory applications
and in problems that arise from difference or differential equations posed

Bindel, Fall 2022 Matrix Computations

on regular grids — you should expect to see it for regular discretizations of
differential equations where separation of variables works well. There is also
a small industry of people working on tensor decompositions, which feature
sums of Kronecker products.

5.4 Low-rank block structure
In problems that come from certain areas of mathematical physics, inte-
gral equations, and PDE theory, one encounters matrices that are not low
rank, but have low-rank submatrices. The fast multipole method computes
a matrix-vector product for one such class of matrices; and again, there is
a cottage industry of related methods, including the H matrices studied by
Hackbush and colleagues, the sequentially semi-separable (SSS) and heirar-
chically semi-separable (HSS) matrices, quasi-separable matrices, and a horde
of others. A good reference is the pair of books by Vandebril, Van Barel and
Mastronardi [2, 1].

References
[1] Raf Vandebril, Marc Van Barel, and Nicola Mastonardi. Matrix Com-

putations and Semiseparable Matrices: Eigenvalue and Singular Value
Methods. John Hopkins University Press, 2010.

[2] Raf Vandebril, Marc Van Barel, and Nicola Mastonardi. Matrix Com-
putations and Semiseparable Matrices: Linear Systems. John Hopkins
University Press, 2010.

	Matrix algebra versus linear algebra
	Dense matrix basics
	The BLAS
	Locality and memory
	Matrix-vector multiply
	Matrix-matrix multiply
	Blocking and performance
	The lazy man's approach to performance

	Matrix shapes and structures
	Sparse matrices
	Diagonal matrices
	Permutations
	Narrowly banded matrices
	General sparse matrices

	Data-sparse matrices
	(Nearly) low-rank matrices
	Circulant, Toeplitz, and Hankel structure
	Separability and Kronecker product structure
	Low-rank block structure

