
Bindel, Fall 2022 Matrix Computations

2022-08-25

1 Matrix calculus
Numerical linear algebra is not just about algebra, but also about analysis,
the branch of mathematics that deals with real functions and operations
such as differentiation and integration (and their generalizations). This is
particularly relevant when we deal with error analysis.

1.1 Warm up: derivative of a dot product
Consider the real-valued expression yTx as a function of the vector variables
x, y ∈ Rn. How would we compute the gradient of yTx with respect to these
variables? The usual method taught in a first calculus class would be to
write the expression in terms of each of the components of x and y, and then
compute partial derivatives, i.e.

yTx =
n∑

i=1

xiyi

∂(yTx)

∂xj

= yj

∂(yTx)

∂yj
= xj.

This notation is fine for dealing with a dot product, in which we are summing
over only one variable; but when we deal with more complicated matrix
expressions, it quickly becomes painful to deal with coordinates. A neat trick
of notation is to work not with derivatives along the coordinate directions,
but with derivatives in an arbitrary direction (δx, δy) ∈ Rn × Rn:

d

ds

∣∣∣∣
s=0

(y + sδy)T (x+ sδx) = δyTx+ yT δx.

We denote the directional derivative by δ(yTx), giving the tidy expression

δ(yTx) = δyTx+ yT δx.

This is variational notation for reasoning about directional (Gateaux) deriva-
tives. It is often used in mechanics and in PDE theory and functional analysis

Bindel, Fall 2022 Matrix Computations

(where the vector spaces involved are infinite-dimensional), and I have always
felt it deserves to be used more widely.

1.2 Some calculus facts
We will make frequent use of the humble product rule in this class:

δ(AB) = δAB + AδB.

As is always the case, the order of the terms in the products is important.
To differentiate a product of three terms (for example), we would have

δ(ABC) = (δA)BC + A(δB)C + AB(δC).

The product rule and implicit differentiation gives us

0 = δ(A−1A) = δ(A−1)A+ A−1δA.

Rearranging slightly, we have

δ(A−1) = −A−1(δA)A−1,

which is again a matrix version of the familiar rule from Calculus I, differing
only in that we have to be careful about the order of products. This rule
also nicely illustrates the advantage of variational notation; if you are uncon-
vinced, I invite you to write out the elements of the derivative of a matrix
inverse using conventional coordinate notation!

The vector 2-norm and the Frobenius norm for matrices are convenient
because the (squared) norm is a differentiable function of the entries. For
the vector 2-norm, we have

δ(∥x∥2) = δ(x∗x) = (δx)∗x+ x∗(δx);

observing that y∗x = (x∗y)∗ and z + z̄ = 2ℜ(z), we have

δ(∥x∥2) = 2ℜ(δx∗x).

Similarly, the Frobenius norm is associated with a dot product (the unsurprisingly-
named Frobenius inner product) on all the elements of the matrix, which we
can write in matrix form as

⟨A,B⟩F = tr(B∗A),

and we therefore have

δ(∥A∥2F) = δ tr(A∗A) = 2ℜ tr(δA∗A).

Bindel, Fall 2022 Matrix Computations

1.3 The 2-norm revisited
In the previous lecture, we discussed the matrix 2-norm in terms of the
singular value decomposition. What if we did not know about the SVD?
By the definition, we would like to maximize ϕ(v)2 = ∥Av∥2 subject to
∥v∥2 = 1. Flexing our new variational notation, let’s work through the
first-order condition for a maximum. To enforce the condition, we form an
augmented Lagrangian

L(v, µ) = ∥Av∥2 − µ(∥v∥2 − 1)

and differentiating gives us

δL = 2ℜ(δv∗(A∗Av − µv))− δµ(∥v∥2 − 1).

The first-order condition for a maximum or minimum is δL = 0 for all pos-
sible δv and δµ; this gives

A∗Av = µv, ∥v∥2 = 1,

which is an eigenvalue problem involving the Gram matrix A∗A. We will see
this eigenvalue problem again — and the more general idea of the connection
between eigenvalue problems and optimizing quadratic forms — later in the
course.

1.4 Norms and Neumann series
We will do a great deal of operator norm manipulation this semester, almost
all of which boils down to repeated use of the triangle inequality and the
submultiplicative property. For now, we illustrate the point by a simple,
useful example: the matrix version of the geometric series.

Suppose F is a square matrix such that ∥F∥ < 1 in some operator norm,
and consider the power series

n∑
j=0

F j.

Note that ∥F j∥ ≤ ∥F∥j via the submultiplicative property of induced oper-
ator norms. By the triangle inequality, the partial sums satisfy

(I − F)
n∑

j=0

F j = I − F n+1.

Bindel, Fall 2022 Matrix Computations

Hence, we have that

∥(I − F)
n∑

j=0

F j − I∥ ≤ ∥F∥n+1 → 0 as n → ∞,

i.e. I−F is invertible and the inverse is given by the convergent power series
(the geometric series or Neumann series)

(I − F)−1 =
∞∑
j=0

F j.

By applying submultiplicativity and triangle inequality to the partial sums,
we also find that

∥(I − F)−1∥ ≤
∞∑
j=0

∥F∥j = 1

1− ∥F∥
.

Note as a consequence of the above that if ∥A−1E∥ < 1 then

∥(A+ E)−1∥ = ∥(I + A−1E)−1A−1∥ ≤ ∥A−1∥
1− ∥A−1E∥

.

That is, the Neumann series gives us a sense of how a small perturbation to
A can change the norm of A−1.

2 Notions of error
The art of numerics is finding an approximation with a fast algorithm, a
form that is easy to analyze, and an error bound. Given a task, we want
to engineer an approximation that is good enough, and that composes well
with other approximations. To make these goals precise, we need to define
types of errors and error propagation, and some associated notation – which
is the point of this lecture.

2.1 Absolute and relative error
Suppose x̂ is an approximation to x. The absolute error is

eabs = |x̂− x|.

Bindel, Fall 2022 Matrix Computations

Absolute error has the same dimensions as x, and can be misleading without
some context. An error of one meter per second is dramatic if x is my walking
pace; if x is the speed of light, it is a very small error.

The relative error is a measure with a more natural sense of scale:

erel =
|x̂− x|
|x|

.

Relative error is familiar in everyday life: when someone talks about an error
of a few percent, or says that a given measurement is good to three significant
figures, she is describing a relative error.

We sometimes estimate the relative error in approximating x by x̂ using
the relative error in approximating x̂ by x:

êrel =
|x̂− x|
|x̂|

.

As long as êrel < 1, a little algebra gives that

êrel
1 + êrel

≤ erel ≤
êrel

1− êrel
.

If we know êrel is much less than one, then it is a good estimate for erel. If
êrel is not much less than one, we know that x̂ is a poor approximation to x.
Either way, êrel is often just as useful as erel, and may be easier to estimate.

Relative error makes no sense for x = 0, and may be too pessimistic when
the property of x we care about is “small enough.” A natural intermediate
between absolute and relative errors is the mixed error

emixed =
|x̂− x|
|x|+ τ

where τ is some natural scale factor associated with x.

2.2 Errors beyond scalars
Absolute and relative error make sense for vectors as well as scalars. If ∥ · ∥
is a vector norm and x̂ and x are vectors, then the (normwise) absolute and
relative errors are

eabs = ∥x̂− x∥, erel =
∥x̂− x∥
∥x∥

.

Bindel, Fall 2022 Matrix Computations

We might also consider the componentwise absolute or relative errors

eabs,i = |x̂i − xi| erel,i =
|x̂i − xi|

|xi|
.

The two concepts are related: the maximum componentwise relative error
can be computed as a normwise error in a norm defined in terms of the
solution vector:

max
i

erel,i = |||x̂− x|||

where |||z||| = ∥ diag(x)−1z∥∞. More generally, absolute error makes sense
whenever we can measure distances between the truth and the approxima-
tion; and relative error makes sense whenever we can additionally measure
the size of the truth. However, there are often many possible notions of
distance and size; and different ways to measure give different notions of
absolute and relative error. In practice, this deserves some care.

2.3 Dimensions and scaling
The first step in analyzing many application problems is nondimensional-
ization: combining constants in the problem to obtain a small number of
dimensionless constants. Examples include the aspect ratio of a rectangle,
the Reynolds number in fluid mechanics1, and so forth. There are three big
reasons to nondimensionalize:

• Typically, the physics of a problem only really depends on dimension-
less constants, of which there may be fewer than the number of dimen-
sional constants. This is important for parameter studies, for example.

• For multi-dimensional problems in which the unknowns have different
units, it is hard to judge an approximation error as “small” or “large,”
even with a (normwise) relative error estimate. But one can usually
tell what is large or small in a non-dimensionalized problem.

• Many physical problems have dimensionless parameters much less than
one or much greater than one, and we can approximate the physics in

1Or any of a dozen other named numbers in fluid mechanics. Fluid mechanics is a field
that appreciates the power of dimensional analysis

Bindel, Fall 2022 Matrix Computations

these limits. Often when dimensionless constants are huge or tiny and
asymptotic approximations work well, naive numerical methods work
work poorly. Hence, nondimensionalization helps us choose how to
analyze our problems — and a purely numerical approach may be silly.

3 Forward and backward error
We often approximate a function f by another function f̂ . For a particular
x, the forward (absolute) error is

|f̂(x)− f(x)|.

In words, forward error is the function output. Sometimes, though, we can
think of a slightly wrong input:

f̂(x) = f(x̂).

In this case, |x − x̂| is called the backward error. An algorithm that always
has small backward error is backward stable.

A condition number a tight constant relating relative output error to
relative input error. For example, for the problem of evaluating a sufficiently
nice function f(x) where x is the input and x̂ = x + h is a perturbed input
(relative error |h|/|x|), the condition number κ[f(x)] is the smallest constant
such that

|f(x+ h)− f(x)|
|f(x)|

≤ κ[f(x)]
|h|
|x|

+ o(|h|)

If f is differentiable, the condition number is

κ[f(x)] = lim
h ̸=0

|f(x+ h)− f(x)|/|f(x)|
|(x+ h)− x|/|x|

=
|f ′(x)||x|
|f(x)|

.

If f is Lipschitz in a neighborhood of x (locally Lipschitz), then

κ[f(x)] =
Mf(x)|x|
|f(x)|

.

where Mf is the smallest constant such that |f(x+h)−f(x)| ≤ Mf |h|+o(|h|).
When the problem has no linear bound on the output error relative to the

Bindel, Fall 2022 Matrix Computations

input error, we sat the problem has an infinite condition number. An example
is x1/3 at x = 0.

A problem with a small condition number is called well-conditioned; a
problem with a large condition number is ill-conditioned. A backward stable
algorithm applied to a well-conditioned problem has a small forward error.

4 Perturbing matrix problems
To make the previous discussion concrete, suppose I want y = Ax, but
because of a small error in A (due to measurement errors or roundoff effects),
I instead compute ŷ = (A+ E)x where E is “small.” The expression for the
absolute error is trivial:

∥ŷ − y∥ = ∥Ex∥.
But I usually care more about the relative error.

∥ŷ − y∥
∥y∥

=
∥Ex∥
∥y∥

.

If we assume that A is invertible and that we are using consistent norms
(which we will usually assume), then

∥Ex∥ = ∥EA−1y∥ ≤ ∥E∥∥A−1∥∥y∥,
which gives us

∥ŷ − y∥
∥y∥

≤ ∥A∥∥A−1∥∥E∥
∥A∥

= κ(A)
∥E∥
∥A∥

.

That is, the relative error in the output is the relative error in the input mul-
tiplied by the condition number κ(A) = ∥A∥∥A−1∥. Technically, this is the
condition number for the problem of matrix multiplication (or solving linear
systems, as we will see) with respect to a particular (consistent) norm; dif-
ferent problems have different condition numbers. Nonetheless, it is common
to call this “the” condition number of A.

For some problems, we are given more control over the structure of the
error matrix E. For example, we might suppose that A is symmetric, and
ask whether we can get a tighter bound if in addition to assuming a bound
on ∥E∥, we also assume E is symmetric. In this particular case, the answer
is “no” — we have the same condition number either way, at least for the
2-norm or Frobenius norm2. In other cases, assuming a structure to the

2This is left as an exercise for the student

Bindel, Fall 2022 Matrix Computations

perturbation does indeed allow us to achieve tighter bounds.
As an example of a refined bound, we consider moving from condition

numbers based on small norm-wise perturbations to condition numbers based
on small element-wise perturbations. Suppose E is elementwise small relative
to A, i.e. |E| ≤ ϵ|A|. Suppose also that we are dealing with a norm such that
∥X∥ ≤ ∥ |X| ∥, as is true of all the norms we have seen so far. Then

∥ŷ − y∥
∥y∥

≤ ∥EA−1∥ ≤ ∥ |A| |A−1| ∥ϵ.

The quantity κrel(A) = ∥ |A| |A−1| ∥ is the relative condition number; it
is closely related to the Skeel condition number which we will see in our
discussion of linear systems3. Unlike the standard condition number, the
relative condition number is invariant under column scaling of A; that is
κrel(AD) = κrel(A) where D is a nonsingular diagonal matrix.

What if, instead of perturbing A, we perturb x? That is, if ŷ = Ax̂ and
y = Ax, what is the condition number relating ∥ŷ− y∥/∥y∥ to ∥x̂− x∥/∥x∥?
We note that

∥ŷ − y∥ = ∥A(x̂− x)∥ ≤ ∥A∥∥x̂− x∥;

and
∥x∥ = ∥A−1y∥ ≤ ∥A−1∥∥y∥ =⇒ ∥y∥ ≥ ∥A−1∥−1∥x∥.

Put together, this implies

∥ŷ − y∥
∥y∥

≤ ∥A∥∥A−1∥∥x̂− x∥
∥x∥

.

The same condition number appears again!

3The Skeel condition number involves the two factors in the reverse order.

	Matrix calculus
	Warm up: derivative of a dot product
	Some calculus facts
	The 2-norm revisited
	Norms and Neumann series

	Notions of error
	Absolute and relative error
	Errors beyond scalars
	Dimensions and scaling

	Forward and backward error
	Perturbing matrix problems

