
CS 5220: Dense Linear Algebra

David Bindel
2017-10-19

1



Parallel matmul

• Basic operation: C = C+ AB
• Computation: 2n3 flops
• Goal: 2n3/p flops per processor, minimal communication
• Two main contenders: SUMMA and Cannon

2



Outer product algorithm

Serial: Recall outer product organization:
1 for k = 0:s-1
2 C += A(:,k)*B(k,:);
3 end

Parallel: Assume p = s2 processors, block s× s matrices.
For a 2× 2 example:[

C00 C01
C10 C11

]
=

[
A00B00 A00B01
A10B00 A10B01

]
+

[
A01B10 A01B11
A11B10 A11B11

]

• Processor for each (i, j) =⇒ parallel work for each k!
• Note everyone in row i uses A(i, k) at once,
and everyone in row j uses B(k, j) at once.

3



Parallel outer product (SUMMA)

1 for k = 0:s-1
2 for each i in parallel
3 broadcast A(i,k) to row
4 for each j in parallel
5 broadcast A(k,j) to col
6 On processor (i,j), C(i,j) += A(i,k)*B(k,j);
7 end

If we have tree along each row/column, then

• log(s) messages per broadcast
• α+ βn2/s2 per message
• 2 log(s)(αs+ βn2/s) total communication
• Compare to 1D ring: (p− 1)α+ (1− 1/p)n2β

Note: Same ideas work with block size b < n/s

4



SUMMA

5



SUMMA

6



SUMMA

7



Parallel outer product (SUMMA)

If we have tree along each row/column, then

• log(s) messages per broadcast
• α+ βn2/s2 per message
• 2 log(s)(αs+ βn2/s) total communication

Assuming communication and computation can potentially
overlap completely, what does the speedup curve look like?

8



Cannon’s algorithm

[
C00 C01
C10 C11

]
=

[
A00B00 A01B11
A11B10 A10B01

]
+

[
A01B10 A00B01
A10B00 A11B11

]

Idea: Reindex products in block matrix multiply

C(i, j) =
p−1∑
k=0

A(i, k)B(k, j)

=

p−1∑
k=0

A(i, k+ i+ j mod p) B(k+ i+ j mod p, j)

For a fixed k, a given block of A (or B) is needed for
contribution to exactly one C(i, j).

9



Cannon’s algorithm

1 % Move A(i,j) to A(i,i+j)
2 for i = 0 to s-1
3 cycle A(i,:) left by i
4

5 % Move B(i,j) to B(i+j,j)
6 for j = 0 to s-1
7 cycle B(:,j) up by j
8

9 for k = 0 to s-1
10 in parallel;
11 C(i,j) = C(i,j) + A(i,j)*B(i,j);
12 cycle A(:,i) left by 1
13 cycle B(:,j) up by 1

10



Cost of Cannon

• Assume 2D torus topology
• Initial cyclic shifts: ≤ s messages each (≤ 2s total)
• For each phase: 2 messages each (2s total)
• Each message is size n2/s2

• Communication cost: 4s(α+ βn2/s2) = 4(αs+ βn2/s)
• This communication cost is optimal!
... but SUMMA is simpler, more flexible, almost as good

11



Reminder: Why matrix multiply?

BLAS

LAPACK

Build fast serial linear algebra (LAPACK) on top of BLAS 3.

12



Reminder: Why matrix multiply?

BLAS

LAPACK

MPI

BLACS

PBLAS

ScaLAPACK

ScaLAPACK builds additional layers on same idea.

13



Reminder: Evolution of LU

On board...

14



Blocked GEPP

Find pivot

15



Blocked GEPP

Swap pivot row

16



Blocked GEPP

Update within block column

17



Blocked GEPP

Delayed update (at end of block)

18



Big idea

• Delayed update strategy lets us do LU fast
• Could have also delayed application of pivots

• Same idea with other one-sided factorizations (QR)
• Can get decent multi-core speedup with parallel BLAS!
... assuming n sufficiently large.

There are still some issues left over (block size? pivoting?)...

19



Explicit parallelization of GE

What to do:

• Decompose into work chunks
• Assign work to threads in a balanced way
• Orchestrate the communication and synchronization
• Map which processors execute which threads

20



Possible matrix layouts

1D column blocked: bad load balance

0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2



21



Possible matrix layouts

1D column cyclic: hard to use BLAS2/3

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2



22



Possible matrix layouts

1D column block cyclic: block column factorization a bottleneck

0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1



23



Possible matrix layouts

Block skewed: indexing gets messy

0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0



24



Possible matrix layouts

2D block cyclic: 

0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
2 2 3 3 2 2 3 3
2 2 3 3 2 2 3 3
0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
2 2 3 3 2 2 3 3
2 2 3 3 2 2 3 3



25



Possible matrix layouts

• 1D column blocked: bad load balance
• 1D column cyclic: hard to use BLAS2/3
• 1D column block cyclic: factoring column is a bottleneck
• Block skewed (a la Cannon): just complicated
• 2D row/column block: bad load balance
• 2D row/column block cyclic: win!

26



Distributed GEPP

Find pivot (column broadcast)

27



Distributed GEPP

Swap pivot row within block column + broadcast pivot

28



Distributed GEPP

Update within block column

29



Distributed GEPP

At end of block, broadcast swap info along rows

30



Distributed GEPP

Apply all row swaps to other columns

31



Distributed GEPP

Broadcast block LII right

32



Distributed GEPP

Update remainder of block row

33



Distributed GEPP

Broadcast rest of block row down

34



Distributed GEPP

Broadcast rest of block col right

35



Distributed GEPP

Update of trailing submatrix

36



Cost of ScaLAPACK GEPP

Communication costs:

• Lower bound: O(n2/
√
P) words, O(

√
P) messages

• ScaLAPACK:
• O(n2 logP/

√
P) words sent

• O(n logp) messages
• Problem: reduction to find pivot in each column

• Recent research on stable variants without partial pivoting

37



What if you don’t care about dense Gaussian elimination?
Let’s review some ideas in a different setting...

38



Floyd-Warshall

Goal: Find shortest path lengths between all node pairs.

Idea: Dynamic programming! Define

d(k)ij = shortest path i to j with intermediates in {1, . . . , k}.

Then
d(k)ij = min

(
d(k−1)ij ,d(k−1)ik + d(k−1)kj

)
and d(n)ij is the desired shortest path length.

39



The same and different

Floyd’s algorithm for all-pairs shortest paths:
1 for k=1:n
2 for i = 1:n
3 for j = 1:n
4 D(i,j) = min(D(i,j), D(i,k)+D(k,j));

Unpivoted Gaussian elimination (overwriting A):
1 for k=1:n
2 for i = k+1:n
3 A(i,k) = A(i,k) / A(k,k);
4 for j = k+1:n
5 A(i,j) = A(i,j)-A(i,k)*A(k,j);

40



The same and different

• The same: O(n3) time, O(n2) space
• The same: can’t move k loop (data dependencies)

• ... at least, can’t without care!
• Different from matrix multiplication

• The same: x(k)ij = f
(
x(k−1)ij ,g

(
x(k−1)ik , x(k−1)kj

))
• Same basic dependency pattern in updates!
• Similar algebraic relations satisfied

• Different: Update to full matrix vs trailing submatrix

41



How far can we get?

How would we

• Write a cache-efficient (blocked) serial implementation?
• Write a message-passing parallel implementation?

The full picture could make a fun class project...

42



Onward!

Next up: Sparse linear algebra and iterative solvers!

43


