CS 5220: Dense Linear Algebra

David Bindel
2017-10-19

Parallel matmul

- Basic operation: C = C+ AB
- Computation: 2n? flops
- Goal: 2n3/p flops per processor, minimal communication

« Two main contenders: SUMMA and Cannon

Outer product algorithm

Serial: Recall outer product organization:

1 for k = 0:s-1
) C += A(:,k)*B(kI:);
s end

Parallel: Assume p = s? processors, block s x s matrices.
Fora 2 x 2 example:

Coo Coy _ AooBoo AooBor i Ao1Bio Ao1Br
Cio G A10Boo A10Boy AnBio A1Bn

- Processor for each (i,j) = parallel work for each R!
- Note everyone in row i uses A(i, R) at once,
and everyone in row j uses B(k,j) at once.

Parallel outer product (SUMMA)

1 for k = 0:s-1

2 for each i in parallel
broadcast A(i,k) to row
4 for each j in parallel
5 broadcast A(k,j) to col
6 On processor (i,j), c(i,j) += A(i,k)*B(k,3j);
7 end

If we have tree along each row/column, then
- log(s) messages per broadcast
- a + Bn?/s? per message
- 2log(s)(as + Bn?/s) total communication
- Compare to 1D ring: (p — 1)a + (1 —1/p)n?B

Note: Same ideas work with block size b < n/s

v

v

~

Parallel outer product (SUMMA)

If we have tree along each row/column, then
- log(s) messages per broadcast
- a + Bn?/s? per message

- 2log(s)(as + Bn?/s) total communication

Assuming communication and computation can potentially
overlap completely, what does the speedup curve look like?

Cannon’s algorithm

Coo Con _ AooBoo Ao1B1i i Ao1Bio AooBon
Cio Cn AnBio AroBor A10Boo AnBn

Idea: Reindex products in block matrix multiply

—1

(i) = S A(i, R)B(R,))
0
1

o

=
Il

o

A(l, R+i+j modp)B(k+i+j mod p,))
0

=
Il

For a fixed R, a given block of A (or B) is needed for
contribution to exactly one C(i,)).

Cannon’s algorithm

1 % Move A(i,j) to A(i,i+j)
> for i = 0 to s-1
cycle A(i,:) left by i

5 % Move B(i,j) to B(i+j,j)
e for j = 0 to s-1
cycle B(:,j) up by j

o for k = 0 to s-1

10 in parallel;

7 (i, j) = c(i,j) + A(i,3)*B(i,3);
12 cycle A(:,1) left by 1

3 cycle B(:,j) up by 1

10

Cost of Cannon

- Assume 2D torus topology
- Initial cyclic shifts: < s messages each (< 2s total)
- For each phase: 2 messages each (2s total)
- Each message is size n?/s?
- Communication cost: 4s(a + 8n?/s?) = 4(as + Bn?/s)
- This communication cost is optimal!
.. but SUMMA is simpler, more flexible, almost as good

n

Reminder: Why matrix multiply?

Build fast serial linear algebra (LAPACK) on top of BLAS 3.

12

Reminder: Why matrix multiply?

ScalLAPACK

ScalAPACK builds additional layers on same idea.

13

Reminder: Evolution of LU

On board...

14

Blocked GEPP

Find pivot

15

Blocked GEPP

Swap pivot row

Blocked GEPP

Update within block column

Blocked GEPP

Delayed update (at end of block)

- Delayed update strategy lets us do LU fast
- Could have also delayed application of pivots

- Same idea with other one-sided factorizations (QR)

- Can get decent multi-core speedup with parallel BLAS!
.. assuming n sufficiently large.

There are still some issues left over (block size? pivoting?)...

19

Explicit parallelization of GE

What to do:

- Decompose into work chunks
- Assign work to threads in a balanced way
- Orchestrate the communication and synchronization

- Map which processors execute which threads

20

n
s}
>
(@]
>
<
X
-
fras}
©
(S
o
=
0
0
@]
[a

1D column blocked: bad load balance

2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2

1
1
1
1
1
1
1
1
.

1
1
1
1
1
1
1
1
1

1
1
1

0 00
0 00
0 00

0 0 0 1

0 0 0 1

0 0 0 1

0 0 01

0 0 0 1

1

0 00

21

n
s}
>
(@]
>
<
X
-
fras}
©
(S
o
=
0
0
@]
[a

1D column cyclic: hard to use BLAS2/3

2
2
2
2
2
2
2
2
2

2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0
2 0 1

2 01
2 01
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1
2 0 1

0
0
0
0
0
0
0
0
0

1
1

1

22

1
1
1
1
1
1
1
.
.
1

2 2 00
2 2 00
2 2 00
2 2 00
2 2 00
2 2 00
2 2 00
2 2 00
2 2 00
2 2 00

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
.
.
1

0
0
0
0
0
0
0
0
0
0

1D column block cyclic: block column factorization a bottleneck

n
s}
>
(@]
>
<
X
-
fras}
©
(S
o
=
0
0
@]
[a

23

n
s}
>
(@]
>
<
X
-
fras}
©
(S
o
=
0
0
@]
[a

Block skewed: indexing gets messy

2 2 2
2 2 2
2 2 2
1

1
1

1
1
1

.
1
1

0 0 0 1
0 0 0 1
0 0 0 1
2 2 2 000
2 2 2 000
2 2 2 000

2 22 000
2 22 000
2 22 000

1
1
1

2%

n
s}
>
(@]
>
<
X
-
fras}
©
(S
o
=
0
0
@]
[a

2D block cyclic:

2 2 3 3 2 2 33

2 2 3 3 2 2 33

2 2 3 3 2 2 33

2 2 3 3 2 2 33

25

Possible matrix layouts

- 1D column blocked: bad load balance

- 1D column cyclic: hard to use BLAS2/3

- 1D column block cyclic: factoring column is a bottleneck
- Block skewed (a la Cannon): just complicated

- 2D row/column block: bad load balance

- 2D row/column block cyclic: win!

26

Distributed GEPP

Find pivot (column broadcast)

27

Distributed GEPP

Swap pivot row within block column + broadcast pivot

28

Distributed GEPP

Update within block column

29

Distributed GEPP

A
v

v

A
2

At end of block, broadcast swap info along rows

30

Distributed GEPP

Apply all row swaps to other columns

31

Distributed GEPP

V¥

Broadcast block Ly, right

32

Distributed GEPP

N

Update remainder of block row

33

Distributed GEPP

Broadcast rest of block row down

34

Distributed GEPP

L 2

Broadcast rest of block col right

35

Distributed GEPP

Update of trailing submatrix

36

Cost of ScaLAPACK GEPP

Communication costs:

- Lower bound: O(n?/+/P) words, O(v/P) messages
- ScalLAPACK:

- 0(n? log P/+/P) words sent

- O(nlogp) messages

- Problem: reduction to find pivot in each column

- Recent research on stable variants without partial pivoting

37

What if you don’t care about dense Gaussian elimination?
Let's review some ideas in a different setting...

38

Floyd-Warshall

Goal: Find shortest path lengths between all node pairs.

Idea: Dynamic programming! Define

dfjk) = shortest path i to j with intermediates in {1,...,R}.

Then
(k) _ (k=1) 4(k=1) (k=1)
dij =min <du dy —|—d)

and dfj”) is the desired shortest path length.

39

The same and different

Floyd’s algorithm for all-pairs shortest paths:

1 for k=1:n
2 for i = 1:n
3 for j = 1:n

D(i,3) = min(D(i,j), D(i,k)+D(k,3));

Unpivoted Gaussian elimination (overwriting A):

1 for k=1:n
for i = k+1:n
A(i,k) = A(i,k) / A(k,k);
4 for j = k+1:n
5 ACi,j) = A(i,3)-A(i,k)*A(k,]);

40

The same and different

- The same: O(n?) time, O(n?) space
- The same: can’t move k loop (data dependencies)

- ... at least, can't without care!
- Different from matrix multiplication

. O (R—1) (R=1) (R=T)

- Same basic dependency pattern in updates!
- Similar algebraic relations satisfied

- Different: Update to full matrix vs trailing submatrix

41

How far can we get?

How would we

- Write a cache-efficient (blocked) serial implementation?

- Write a message-passing parallel implementation?

The full picture could make a fun class project...

2

Next up: Sparse linear algebra and iterative solvers!

43

