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Parallel matmul

• Basic operation: C = C+ AB
• Computation: 2n3 flops
• Goal: 2n3/p flops per processor, minimal communication
• Two main contenders: SUMMA and Cannon
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Outer product algorithm

Serial: Recall outer product organization:
1 for k = 0:s-1
2 C += A(:,k)*B(k,:);
3 end

Parallel: Assume p = s2 processors, block s× s matrices.
For a 2× 2 example:[

C00 C01
C10 C11

]
=

[
A00B00 A00B01
A10B00 A10B01

]
+

[
A01B10 A01B11
A11B10 A11B11

]

• Processor for each (i, j) =⇒ parallel work for each k!
• Note everyone in row i uses A(i, k) at once,
and everyone in row j uses B(k, j) at once.
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Parallel outer product (SUMMA)

1 for k = 0:s-1
2 for each i in parallel
3 broadcast A(i,k) to row
4 for each j in parallel
5 broadcast A(k,j) to col
6 On processor (i,j), C(i,j) += A(i,k)*B(k,j);
7 end

If we have tree along each row/column, then

• log(s) messages per broadcast
• α+ βn2/s2 per message
• 2 log(s)(αs+ βn2/s) total communication
• Compare to 1D ring: (p− 1)α+ (1− 1/p)n2β

Note: Same ideas work with block size b < n/s
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SUMMA
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SUMMA
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SUMMA
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Parallel outer product (SUMMA)

If we have tree along each row/column, then

• log(s) messages per broadcast
• α+ βn2/s2 per message
• 2 log(s)(αs+ βn2/s) total communication

Assuming communication and computation can potentially
overlap completely, what does the speedup curve look like?
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Cannon’s algorithm

[
C00 C01
C10 C11

]
=

[
A00B00 A01B11
A11B10 A10B01

]
+

[
A01B10 A00B01
A10B00 A11B11

]

Idea: Reindex products in block matrix multiply

C(i, j) =
p−1∑
k=0

A(i, k)B(k, j)

=

p−1∑
k=0

A(i, k+ i+ j mod p) B(k+ i+ j mod p, j)

For a fixed k, a given block of A (or B) is needed for
contribution to exactly one C(i, j).
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Cannon’s algorithm

1 % Move A(i,j) to A(i,i+j)
2 for i = 0 to s-1
3 cycle A(i,:) left by i
4

5 % Move B(i,j) to B(i+j,j)
6 for j = 0 to s-1
7 cycle B(:,j) up by j
8

9 for k = 0 to s-1
10 in parallel;
11 C(i,j) = C(i,j) + A(i,j)*B(i,j);
12 cycle A(:,i) left by 1
13 cycle B(:,j) up by 1
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Cost of Cannon

• Assume 2D torus topology
• Initial cyclic shifts: ≤ s messages each (≤ 2s total)
• For each phase: 2 messages each (2s total)
• Each message is size n2/s2

• Communication cost: 4s(α+ βn2/s2) = 4(αs+ βn2/s)
• This communication cost is optimal!
... but SUMMA is simpler, more flexible, almost as good
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Reminder: Why matrix multiply?

BLAS

LAPACK

Build fast serial linear algebra (LAPACK) on top of BLAS 3.
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Reminder: Why matrix multiply?

BLAS

LAPACK

MPI

BLACS

PBLAS

ScaLAPACK

ScaLAPACK builds additional layers on same idea.
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Reminder: Evolution of LU

On board...
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Blocked GEPP

Find pivot
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Blocked GEPP

Swap pivot row
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Blocked GEPP

Update within block column
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Blocked GEPP

Delayed update (at end of block)
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Big idea

• Delayed update strategy lets us do LU fast
• Could have also delayed application of pivots

• Same idea with other one-sided factorizations (QR)
• Can get decent multi-core speedup with parallel BLAS!
... assuming n sufficiently large.

There are still some issues left over (block size? pivoting?)...
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Explicit parallelization of GE

What to do:

• Decompose into work chunks
• Assign work to threads in a balanced way
• Orchestrate the communication and synchronization
• Map which processors execute which threads
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Possible matrix layouts

1D column blocked: bad load balance

0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2


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Possible matrix layouts

1D column cyclic: hard to use BLAS2/3

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2


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Possible matrix layouts

1D column block cyclic: block column factorization a bottleneck

0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1
0 0 1 1 2 2 0 0 1 1


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Possible matrix layouts

Block skewed: indexing gets messy

0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0


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Possible matrix layouts

2D block cyclic: 

0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
2 2 3 3 2 2 3 3
2 2 3 3 2 2 3 3
0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
2 2 3 3 2 2 3 3
2 2 3 3 2 2 3 3


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Possible matrix layouts

• 1D column blocked: bad load balance
• 1D column cyclic: hard to use BLAS2/3
• 1D column block cyclic: factoring column is a bottleneck
• Block skewed (a la Cannon): just complicated
• 2D row/column block: bad load balance
• 2D row/column block cyclic: win!
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Distributed GEPP

Find pivot (column broadcast)
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Distributed GEPP

Swap pivot row within block column + broadcast pivot
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Distributed GEPP

Update within block column
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Distributed GEPP

At end of block, broadcast swap info along rows
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Distributed GEPP

Apply all row swaps to other columns
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Distributed GEPP

Broadcast block LII right
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Distributed GEPP

Update remainder of block row
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Distributed GEPP

Broadcast rest of block row down

34



Distributed GEPP

Broadcast rest of block col right
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Distributed GEPP

Update of trailing submatrix
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Cost of ScaLAPACK GEPP

Communication costs:

• Lower bound: O(n2/
√
P) words, O(

√
P) messages

• ScaLAPACK:
• O(n2 logP/

√
P) words sent

• O(n logp) messages
• Problem: reduction to find pivot in each column

• Recent research on stable variants without partial pivoting
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What if you don’t care about dense Gaussian elimination?
Let’s review some ideas in a different setting...

38



Floyd-Warshall

Goal: Find shortest path lengths between all node pairs.

Idea: Dynamic programming! Define

d(k)ij = shortest path i to j with intermediates in {1, . . . , k}.

Then
d(k)ij = min

(
d(k−1)ij ,d(k−1)ik + d(k−1)kj

)
and d(n)ij is the desired shortest path length.
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The same and different

Floyd’s algorithm for all-pairs shortest paths:
1 for k=1:n
2 for i = 1:n
3 for j = 1:n
4 D(i,j) = min(D(i,j), D(i,k)+D(k,j));

Unpivoted Gaussian elimination (overwriting A):
1 for k=1:n
2 for i = k+1:n
3 A(i,k) = A(i,k) / A(k,k);
4 for j = k+1:n
5 A(i,j) = A(i,j)-A(i,k)*A(k,j);
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The same and different

• The same: O(n3) time, O(n2) space
• The same: can’t move k loop (data dependencies)

• ... at least, can’t without care!
• Different from matrix multiplication

• The same: x(k)ij = f
(
x(k−1)ij ,g

(
x(k−1)ik , x(k−1)kj

))
• Same basic dependency pattern in updates!
• Similar algebraic relations satisfied

• Different: Update to full matrix vs trailing submatrix
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How far can we get?

How would we

• Write a cache-efficient (blocked) serial implementation?
• Write a message-passing parallel implementation?

The full picture could make a fun class project...
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Onward!

Next up: Sparse linear algebra and iterative solvers!
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