
CS 5220: Locality and parallelism in
simulations I

David Bindel
2017-09-12

1



Parallelism and locality

• Real world exhibits parallelism and locality
• Particles, people, etc function independently
• Nearby objects interact more strongly than distant ones
• Can often simplify dependence on distant objects

• Can get more parallelism / locality through model
• Limited range of dependency between adjacent time steps
• Can neglect or approximate far-field effects

• Often get parallism at multiple levels
• Hierarchical circuit simulation
• Interacting models for climate
• Parallelizing individual experiments in MC or optimization

2



Basic styles of simulation

• Discrete event systems (continuous or discrete time)
• Game of life, logic-level circuit simulation
• Network simulation

• Particle systems
• Billiards, electrons, galaxies, ...
• Ants, cars, ...?

• Lumped parameter models (ODEs)
• Circuits (SPICE), structures, chemical kinetics

• Distributed parameter models (PDEs / integral equations)
• Heat, elasticity, electrostatics, ...

Often more than one type of simulation appropriate.
Sometimes more than one at a time!

3



Discrete events

Basic setup:

• Finite set of variables, updated via transition function
• Synchronous case: finite state machine
• Asynchronous case: event-driven simulation
• Synchronous example: Game of Life

Nice starting point — no discretization concerns!

4



Game of Life

Lonely Crowded OK Born
(Dead next step) (Live next step)

Game of Life (John Conway):

1. Live cell dies with < 2 live neighbors
2. Live cell dies with > 3 live neighbors
3. Live cell lives with 2–3 live neighbors
4. Dead cell becomes live with exactly 3 live neighbors

5



Game of Life

P0 P1

P2 P3

Easy to parallelize by domain decomposition.

• Update work involves volume of subdomains
• Communication per step on surface (cyan)

6



Game of Life: Pioneers and Settlers

What if pattern is “dilute”?

• Few or no live cells at surface at each step
• Think of live cell at a surface as an “event”
• Only communicate events!

• This is asynchronous
• Harder with message passing — when do you receive?

7



Asynchronous Game of Life

How do we manage events?

• Could be speculative — assume no communication across
boundary for many steps, back up if needed

• Or conservative — wait whenever communication possible
• possible ̸≡ guaranteed!
• Deadlock: everyone waits for everyone else to send data
• Can get around this with NULL messages

How do we manage load balance?

• No need to simulate quiescent parts of the game!
• Maybe dynamically assign smaller blocks to processors?

8



Particle simulation

Particles move via Newton (F = ma), with

• External forces: ambient gravity, currents, etc.
• Local forces: collisions, Van der Waals (1/r6), etc.
• Far-field forces: gravity and electrostatics (1/r2), etc.

• Simple approximations often apply (Saint-Venant)

9



A forced example

Example force:

fi =
∑
j
Gmimj

(xj − xi)
r3ij

(
1−

(
a
rij

)4)
, rij = ∥xi − xj∥

• Long-range attractive force (r−2)
• Short-range repulsive force (r−6)
• Go from attraction to repulsion at radius a

10



A simple serial simulation

In Matlab, we can write

npts = 100;
t = linspace(0, tfinal, npts);
[tout, xyv] = ode113(@fnbody, ...

t, [x; v], [], m, g);
xout = xyv(:,1:length(x))';

... but I can’t call ode113 in C in parallel (or can I?)

11



A simple serial simulation

Maybe a fixed step leapfrog will do?

npts = 100;
steps_per_pt = 10;
dt = tfinal/(steps_per_pt*(npts-1));
xout = zeros(2*n, npts);
xout(:,1) = x;
for i = 1:npts-1
for ii = 1:steps_per_pt
x = x + v*dt;
a = fnbody(x, m, g);
v = v + a*dt;

end
xout(:,i+1) = x;

end 12



Plotting particles

13



Pondering particles

• Where do particles “live” (esp. in distributed memory)?
• Decompose in space? By particle number?
• What about clumping?

• How are long-range force computations organized?
• How are short-range force computations organized?
• How is force computation load balanced?
• What are the boundary conditions?
• How are potential singularities handled?
• What integrator is used? What step control?

14



External forces

Simplest case: no particle interactions.

• Embarrassingly parallel (like Monte Carlo)!
• Could just split particles evenly across processors
• Is it that easy?

• Maybe some trajectories need short time steps?
• Even with MC, load balance may not be entirely trivial.

15



Local forces

• Simplest all-pairs check is O(n2) (expensive)
• Or only check close pairs (via binning, quadtrees?)
• Communication required for pairs checked
• Usual model: domain decomposition 16



Local forces: Communication

Minimize communication:

• Send particles that might affect a neighbor “soon”
• Trade extra computation against communication
• Want low surface area-to-volume ratios on domains 17



Local forces: Load balance

• Are particles evenly distributed?
• Do particles remain evenly distributed?
• Can divide space unevenly (e.g. quadtree/octtree)

18



Far-field forces

Mine

Buffered

Mine

Buffered

Mine

Buffered

• Every particle affects every other particle
• All-to-all communication required

• Overlap communication with computation
• Poor memory scaling if everyone keeps everything!

• Idea: pass particles in a round-robin manner

19



Passing particles for far-field forces

Mine

Buffered

Mine

Buffered

Mine

Buffered

copy local particles to current buf
for phase = 1:p
send current buf to rank+1 (mod p)
recv next buf from rank-1 (mod p)
interact local particles with current buf
swap current buf with next buf

end
20



Passing particles for far-field forces

Suppose n = N/p particles in buffer. At each phase

tcomm ≈ α+ βn
tcomp ≈ γn2

So we can mask communication with computation if

n ≥ 1
2γ

(
β +

√
β2 + 4αγ

)
>

β

γ

More efficient serial code
=⇒ larger n needed to mask communication!
=⇒ worse speed-up as p gets larger (fixed N)
but scaled speed-up (n fixed) remains unchanged.

This analysis neglects overhead term in LogP.
21



Far-field forces: particle-mesh methods

Consider r−2 electrostatic potential interaction

• Enough charges looks like a continuum!
• Poisson equation maps charge distribution to potential
• Use fast Poisson solvers for regular grids (FFT, multigrid)
• Approximation depends on mesh and particle density
• Can clean up leading part of approximation error

22



Far-field forces: particle-mesh methods

• Map particles to mesh points (multiple strategies)
• Solve potential PDE on mesh
• Interpolate potential to particles
• Add correction term – acts like local force

23



Far-field forces: tree methods

• Distance simplifies things
• Andromeda looks like a point mass from here?

• Build a tree, approximating descendants at each node
• Several variants: Barnes-Hut, FMM, Anderson’s method
• More on this later in the semester

24



Summary of particle example

• Model: Continuous motion of particles
• Could be electrons, cars, whatever...

• Step through discretized time
• Local interactions

• Relatively cheap
• Load balance a pain

• All-pairs interactions
• Obvious algorithm is expensive (O(n2))
• Particle-mesh and tree-based algorithms help

An important special case of lumped/ODE models.

25


