
CS 5220: Single core architecture

David Bindel
2017-08-29

1



Just for fun

http://www.youtube.com/watch?v=fKK933KK6Gg

Is this a fair portrayal of your CPU?

(See Rich Vuduc’s talk, “Should I port my code to a GPU?”)

2

http://www.youtube.com/watch?v=fKK933KK6Gg
http://web.eecs.utk.edu/~dongarra/ccgsc2010/slides/talk27-vuduc.pdf


The idealized machine

• Address space of named words
• Basic operations are register read/write, logic, arithmetic
• Everything runs in the program order
• High-level language→ “obvious” machine code
• All operations take about the same amount of time

3



The real world

• Memory operations are not all the same!
• Registers and caches lead to variable access speeds
• Different memory layouts dramatically affect performance

• Instructions are non-obvious!
• Pipelining allows instructions to overlap
• Functional units run in parallel (and out of order)
• Instructions take different amounts of time
• Different costs for different orders and instruction mixes

Our goal: enough understanding to help the compiler out.

4



Prelude

We hold these truths to be self-evident:

1. One should not sacrifice correctness for speed
2. One should not re-invent (or re-tune) the wheel
3. Your time matters more than computer time

Less obvious, but still true:

1. Most of the time goes to a few bottlenecks
2. The bottlenecks are hard to find without measuring
3. Communication is expensive (and often a bottleneck)
4. A little good hygiene will save your sanity

• Automate testing, time carefully, and use version control

5



A sketch of reality

Today, a play in two acts:1

1. Act 1: One core is not so serial
2. Act 2: Memory matters

1If you don’t get the reference to This American Life, go find the podcast!

6



Act 1

One core is not so serial.

7



Parallel processing at the laundromat

• Three stages to laundry: wash, dry, fold.
• Three loads: darks, lights, underwear
• How long will this take?

8



Parallel processing at the laundromat

• Serial version:
1 2 3 4 5 6 7 8 9
wash dry fold

wash dry fold
wash dry fold

• Pipeline version:

1 2 3 4 5
wash dry fold Dinner?

wash dry fold Cat videos?
wash dry fold Gym and tanning?

9



Pipelining

• Pipelining improves bandwidth, but not latency
• Potential speedup = number of stages

• But what if there’s a branch?

• Different pipelines for different functional units
• Front-end has a pipeline
• Functional units (FP adder, FP multiplier) pipelined
• Divider is frequently not pipelined

10



Out-of-order execution

Modern CPUs are wide and out-of-order:

• Wide: Fetch/decode or retire multiple ops at once
• Limits: Instruction mix (different ports for different ops)
• NB: May dynamically translate to micro-ops

• Out-of-order: Looks in-order, internally not!
• Limits: Data dependencies

• Details are very hard to work out manually
• Don’t generally know the micro-op breakdown!
• Tricky to think through even if we did
• Compilers help a lot with this
• But they need a good mix of independent ops

11



SIMD

• Single Instruction Multiple Data
• Cray-1 (1976): 8 registers × 64 words of 64 bits each
• Old idea had a resurgence in mid-late 90s (for graphics)
• Now short vectors are ubiquitous...

• Totient CPUs: 256 bits (four doubles) in a vector (AVX)
• Totient accel: 512 bits (eight doubles) in a vector (AVX-512)
• And then there are GPUs!

• Alignment often matters

12



Example: My laptop

MacBook Pro (Retina, 13 in, late 2013).

• Intel Core i5-4288U CPU at 2.6 GHz. 2 core / 4 thread.
• AVX units provide up to 8 double flops/cycle
(Simultaneous vector add + vector multiply)

• Wide dynamic execution: up to four full instructions at
once

• Haswell has two FMA ports, so can retire two at a time

• Operations internally broken down into “micro-ops”
• Cache micro-ops – like a hardware JIT?!

Theoretical peak: 83.2 GFlop/s?

13

http://ark.intel.com/products/75991/Intel-Core-i5-4288U-Processor-3M-Cache-up-to-3_10-GHz


Punchline

• Special features: SIMD instructions, maybe FMAs, ...
• Compiler understands how to utilize these in principle

• Rearranges instructions to get a good mix
• Tries to make use of FMAs, SIMD instructions, etc

• In practice, needs some help:
• Set optimization flags, pragmas, etc
• Rearrange code to make things obvious and predictable
• Use special intrinsics or library routines
• Choose data layouts, algorithms that suit the machine

• Goal: You handle high-level, compiler handles low-level.

14



Act 2

Memory matters.

15



My machine

• Theoretical peak flop rate: 83.2 GFlop/s
• Peak memory bandwidth: 25.6 GB/s
• Arithmetic intensity = flops / memory accesses
• Example: Sum several million doubles (AI = 1) – how fast?
• So what can we do? Not much if lots of fetches, but...

16



Cache basics

Programs usually have locality

• Spatial locality: things close to each other tend to be
accessed consecutively

• Temporal locality: use a “working set” of data repeatedly

Cache hierarchy built to use locality.

17



Cache basics

• Memory latency = how long to get a requested item
• Memory bandwidth = how fast memory can provide data
• Bandwidth improving faster than latency

Caches help:

• Hide memory costs by reusing data
• Exploit temporal locality

• Use bandwidth to fetch a cache line all at once
• Exploit spatial locality

• Use bandwidth to support multiple outstanding reads
• Overlap computation and communication with memory

• Prefetching

This is mostly automatic and implicit.

18



Cache basics

• Store cache lines of several bytes
• Cache hit when copy of needed data in cache
• Cache miss otherwise. Three basic types:

• Compulsory miss: never used this data before
• Capacity miss: filled the cache with other things since this
was last used – working set too big

• Conflict miss: insufficient associativity for access pattern
• Associativity

• Direct-mapped: each address can only go in one cache
location (e.g. store address xxxx1101 only at cache location
1101)

• n-way: each address can go into one of n possible cache
locations (store up to 16 words with addresses xxxx1101 at
cache location 1101).

Higher associativity is more expensive.
19



Teaser

We have N = 106 two-dimensional coordinates, and want their
centroid. Which of these is faster and why?

1. Store an array of (xi, yi) coordinates. Loop i and
simultaneously sum the xi and the yi.

2. Store an array of (xi, yi) coordinates. Loop i and sum the xi,
then sum the yi in a separate loop.

3. Store the xi in one array, the yi in a second array. Sum the
xi, then sum the yi.

Let’s see!

20



Caches on my laptop (I think)

• 32 KB L1 data and memory caches (per core),
8-way associative

• 256 KB L2 cache (per core),
8-way associative

• 3 MB L3 cache (shared by all cores)

21



A memory benchmark (membench)

for array A of length L from 4 KB to 8MB by 2x
for stride s from 4 bytes to L/2 by 2x
time the following loop
for i = 0 to L by s
load A[i] from memory

22



membench on my laptop – what do you see?

23 26 29 212 215 218 221 224

Stride (bytes)

0

5

10

15

20

25

30

Ti
m

e 
(n

s)

4.0K
8.0K
16.0K
32.0K
64.0K
128.0K
256.0K
512.0K
1.0M
2.0M
4.0M
8.0M
16.0M
32.0M
64.0M

23



membench on my laptop – what do you see?

5 10 15 20 25

log2(stride)
12
14
16
18
20
22
24
26

lo
g2

(s
ize

)

5

10

15

20

25

30

24



membench on my laptop – what do you see?

5 10 15 20 25

log2(stride)
12
14
16
18
20
22
24
26

lo
g2

(s
ize

)

5

10

15

20

25

30

• Vertical: 64B line size (25), 4K page size (212)
• Horizontal: 32K L1 (215), 256K L2 (218), 6 MB L3
• Diagonal: 8-way cache associativity, 512 entry L2 TLB

25



membench on Totient – what do you see?

5 10 15 20 25

log2(stride)
12
14
16
18
20
22
24
26

lo
g2

(s
ize

)

5

10

15

20

26



The moral

Even for simple programs, performance is a complicated
function of architecture!

• Need to understand at least a little to write fast programs
• Would like simple models to help understand efficiency
• Would like common tricks to help design fast codes

• Example: blocking (also called tiling)

27



Coda

The Roofline Model.

28



Roofline model

S. Williams, A. Waterman, D. Patterson, “Roofline: An Insightful
Visual Performance Model for Floating-Point Programs and
Multicore Architectures,” CACM, April 2009.

29

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf


Roofline plot basics

Log-log plot (base 2)

• x: Operational intensity (flops/byte)
• y: Attainable performance (GFlop/s)
• Diagonals: Memory limits
• Horizontals: Compute limits
• Papers: https://crd.lbl.gov/departments/
computer-science/PAR/research/roofline/

• Tools: https://bitbucket.org/berkeleylab/
cs-roofline-toolkit

30

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://bitbucket.org/berkeleylab/cs-roofline-toolkit

