CS 5220: Single core architecture

David Bindel
2017-08-29

http://www.youtube.com/watch?v=fKK933KK6Gg

Is this a fair portrayal of your CPU?

(See Rich Vuduc's talk, “Should | port my code to a GPU?")

http://www.youtube.com/watch?v=fKK933KK6Gg
http://web.eecs.utk.edu/~dongarra/ccgsc2010/slides/talk27-vuduc.pdf

The idealized machine

- Address space of named words

- Basic operations are register read/write, logic, arithmetic
- Everything runs in the program order

- High-level language — “obvious” machine code

- All operations take about the same amount of time

The real world

- Memory operations are not all the same!

- Registers and caches lead to variable access speeds

- Different memory layouts dramatically affect performance
- Instructions are non-obvious!

- Pipelining allows instructions to overlap

- Functional units run in parallel (and out of order)

- Instructions take different amounts of time

- Different costs for different orders and instruction mixes

Our goal: enough understanding to help the compiler out.

We hold these truths to be self-evident:

1. One should not sacrifice correctness for speed
2. One should not re-invent (or re-tune) the wheel

3. Your time matters more than computer time
Less obvious, but still true:

1. Most of the time goes to a few bottlenecks
2. The bottlenecks are hard to find without measuring

3. Communication is expensive (and often a bottleneck)

4. A little good hygiene will save your sanity
- Automate testing, time carefully, and use version control

A sketch of reality

Today, a play in two acts:’

1. Act 1: One core is not so serial

2. Act 2: Memory matters

"If you don't get the reference to This American Life, go find the podcast!

One core is not so serial.

Parallel processing at the laundromat

- Three stages to laundry: wash, dry, fold.
- Three loads: darks, lights, underwear

- How long will this take?

Parallel processing at the laundromat

- Serial version:
1 2 3 4 5 6 7 8 9
wash dry fold

wash dry fold
wash dry fold

- Pipeline version:

1 2 3 4 5
wash dry fold Dinner?
wash dry fold Cat videos?
wash dry fold | Gym and tanning?

- Pipelining improves bandwidth, but not latency
- Potential speedup = number of stages
- But what if there’s a branch?

- Different pipelines for different functional units

- Front-end has a pipeline
- Functional units (FP adder, FP multiplier) pipelined
- Divider is frequently not pipelined

10

Out-of-order execution

Modern CPUs are wide and out-of-order:

- Wide: Fetch/decode or retire multiple ops at once
- Limits: Instruction mix (different ports for different ops)
- NB: May dynamically translate to micro-ops

- Qut-of-order: Looks in-order, internally not!
- Limits: Data dependencies

- Details are very hard to work out manually
- Don’t generally know the micro-op breakdown!
- Tricky to think through even if we did
- Compilers help a lot with this
- But they need a good mix of independent ops

n

SIMD

- Single Instruction Multiple Data
- Cray-1(1976): 8 registers x 64 words of 64 bits each

- Old idea had a resurgence in mid-late 90s (for graphics)
- Now short vectors are ubiquitous...

- Totient CPUs: 256 bits (four doubles) in a vector (AVX)

- Totient accel: 512 bits (eight doubles) in a vector (AVX-512)
- And then there are GPUs!

- Alignment often matters

12

Example: My laptop

MacBook Pro (Retina, 13 in, late 2013).

- Intel Core i5-4288U CPU at 2.6 GHz. 2 core / 4 thread.
- AVX units provide up to 8 double flops/cycle
(Simultaneous vector add + vector multiply)

- Wide dynamic execution: up to four full instructions at
once
- Haswell has two FMA ports, so can retire two at a time

- Operations internally broken down into “micro-ops”
- Cache micro-ops - like a hardware JIT?!

Theoretical peak: 83.2 GFlop/s?

13

http://ark.intel.com/products/75991/Intel-Core-i5-4288U-Processor-3M-Cache-up-to-3_10-GHz

- Special features: SIMD instructions, maybe FMAs, ...
- Compiler understands how to utilize these in principle
- Rearranges instructions to get a good mix
- Tries to make use of FMAs, SIMD instructions, etc
- In practice, needs some help:
- Set optimization flags, pragmas, etc
- Rearrange code to make things obvious and predictable

- Use special intrinsics or library routines
- Choose data layouts, algorithms that suit the machine

- Goal: You handle high-level, compiler handles low-level.

14

Memory matters.

15

- Theoretical peak flop rate: 83.2 GFlop/s

- Peak memory bandwidth: 25.6 GB/s

- Arithmetic intensity = flops / memory accesses

- Example: Sum several million doubles (Al = 1) - how fast?
- So what can we do? Not much if lots of fetches, but...

Programs usually have locality

- Spatial locality: things close to each other tend to be
accessed consecutively

- Temporal locality: use a “working set” of data repeatedly

Cache hierarchy built to use locality.

- Memory latency = how long to get a requested item
- Memory bandwidth = how fast memory can provide data
- Bandwidth improving faster than latency

Caches help:

- Hide memory costs by reusing data
- Exploit temporal locality

- Use bandwidth to fetch a cache line all at once
- Exploit spatial locality

- Use bandwidth to support multiple outstanding reads

- Overlap computation and communication with memory
- Prefetching

This is mostly automatic and implicit.

- Store cache lines of several bytes

- Cache hit when copy of needed data in cache
- Cache miss otherwise. Three basic types:
- Compulsory miss: never used this data before
- Capacity miss: filled the cache with other things since this
was last used — working set too big
- Conflict miss: insufficient associativity for access pattern
- Associativity
- Direct-mapped: each address can only go in one cache
location (e.g. store address xxxx1101 only at cache location
1101)
- n-way: each address can go into one of n possible cache
locations (store up to 16 words with addresses xxxx1101 at
cache location 1101).

Higher associativity is more expensive.
19

Teaser

We have N = 10° two-dimensional coordinates, and want their
centroid. Which of these is faster and why?

1. Store an array of (x;,y;) coordinates. Loop i and
simultaneously sum the x; and the y;.

2. Store an array of (xj,y;) coordinates. Loop i and sum the x;,
then sum the y; in a separate loop.

3. Store the x; in one array, the y; in a second array. Sum the
X, then sum the y;.

Let's see!

20

Caches on my laptop (I think)

- 32 KB L1 data and memory caches (per core),
8-way associative

- 256 KB L2 cache (per core),
8-way associative

- 3 MB L3 cache (shared by all cores)

21

A memory benchmark (membench)

for array A of length L from 4 KB to 8MB by 2x
for stride s from 4 bytes to L/2 by 2x
time the following loop
for i = 0 to L by s
load A[i] from memory

22

membench on my laptop — what do you see?

30 A

N N
o w
! !

Time (ns)
=
wv

101

23 26 29 2’12 2’15 2’18 2’21 2’24
Stride (bytes)

4.0K
8.0K
16.0K
32.0K
64.0K
128.0K
256.0K
512.0K
1.0M
2.0M
4.0M
8.0M
16.0M
32.0M
64.0M

23

membench on my laptop — what do you see?

30
25
) - 20
N
L
N - 15
o
o
10
5

' IogZ(stll’ide)

2%

membench on my laptop — what do you see?

5 10 15 20 25
30
25
D 20
N
2
~ 15
=)
Rs}
10
5

' |092(st|'fide)

- Vertical: 64B line size (2°), 4K page size (2"?)
- Horizontal: 32K L1 (2'°), 256K L2 (2'8), 6 MB L3
- Diagonal: 8-way cache associativity, 512 entry L2 TLB

25

membench on Totient - what do you see?

log2(size)

' IogZ(stll’ide)

20

- 15

- 10

26

Even for simple programs, performance is a complicated
function of architecture!

- Need to understand at least a little to write fast programs

- Would like simple models to help understand efficiency
- Would like common tricks to help design fast codes
- Example: blocking (also called tiling)

27

The Roofline Model.

28

Roofline model

S. Williams, A. Waterman, D. Patterson, “Roofline: An Insightful
Visual Performance Model for Floating-Point Programs and
Multicore Architectures,” CACM, April 2009.

29

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf

Roofline plot basics

Log-log plot (base 2)

- x: Operational intensity (flops/byte)
- y: Attainable performance (GFlop/s)
- Diagonals: Memory limits

- Horizontals: Compute limits

- Papers: https://crd.lbl.gov/departments/
computer-science/PAR/research/roofline/

- Tools: https://bitbucket.org/berkeleylab/
cs-roofline-toolkit

30

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://bitbucket.org/berkeleylab/cs-roofline-toolkit

