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http://www.youtube.com/watch?v=fKK933KK6Gg

Is this a fair portrayal of your CPU?

(See Rich Vuduc's talk, “Should | port my code to a GPU?")


http://www.youtube.com/watch?v=fKK933KK6Gg
http://web.eecs.utk.edu/~dongarra/ccgsc2010/slides/talk27-vuduc.pdf

The idealized machine

- Address space of named words

- Basic operations are register read/write, logic, arithmetic
- Everything runs in the program order

- High-level language — “obvious” machine code

- All operations take about the same amount of time



The real world

- Memory operations are not all the same!

- Registers and caches lead to variable access speeds

- Different memory layouts dramatically affect performance
- Instructions are non-obvious!

- Pipelining allows instructions to overlap

- Functional units run in parallel (and out of order)

- Instructions take different amounts of time

- Different costs for different orders and instruction mixes

Our goal: enough understanding to help the compiler out.



We hold these truths to be self-evident:

1. One should not sacrifice correctness for speed
2. One should not re-invent (or re-tune) the wheel

3. Your time matters more than computer time
Less obvious, but still true:

1. Most of the time goes to a few bottlenecks
2. The bottlenecks are hard to find without measuring

3. Communication is expensive (and often a bottleneck)

4. A little good hygiene will save your sanity
- Automate testing, time carefully, and use version control



A sketch of reality

Today, a play in two acts:’

1. Act 1: One core is not so serial

2. Act 2: Memory matters

"If you don't get the reference to This American Life, go find the podcast!



One core is not so serial.



Parallel processing at the laundromat

- Three stages to laundry: wash, dry, fold.
- Three loads: darks, lights, underwear

- How long will this take?



Parallel processing at the laundromat

- Serial version:
1 2 3 4 5 6 7 8 9
wash dry fold

wash dry fold
wash dry fold

- Pipeline version:

1 2 3 4 5
wash dry fold Dinner?
wash dry fold Cat videos?
wash dry fold | Gym and tanning?




- Pipelining improves bandwidth, but not latency
- Potential speedup = number of stages
- But what if there’s a branch?

- Different pipelines for different functional units

- Front-end has a pipeline
- Functional units (FP adder, FP multiplier) pipelined
- Divider is frequently not pipelined
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Out-of-order execution

Modern CPUs are wide and out-of-order:

- Wide: Fetch/decode or retire multiple ops at once
- Limits: Instruction mix (different ports for different ops)
- NB: May dynamically translate to micro-ops

- Qut-of-order: Looks in-order, internally not!
- Limits: Data dependencies

- Details are very hard to work out manually
- Don’t generally know the micro-op breakdown!
- Tricky to think through even if we did
- Compilers help a lot with this
- But they need a good mix of independent ops
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SIMD

- Single Instruction Multiple Data
- Cray-1(1976): 8 registers x 64 words of 64 bits each

- Old idea had a resurgence in mid-late 90s (for graphics)
- Now short vectors are ubiquitous...

- Totient CPUs: 256 bits (four doubles) in a vector (AVX)

- Totient accel: 512 bits (eight doubles) in a vector (AVX-512)
- And then there are GPUs!

- Alignment often matters
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Example: My laptop

MacBook Pro (Retina, 13 in, late 2013).

- Intel Core i5-4288U CPU at 2.6 GHz. 2 core / 4 thread.
- AVX units provide up to 8 double flops/cycle
(Simultaneous vector add + vector multiply)

- Wide dynamic execution: up to four full instructions at
once
- Haswell has two FMA ports, so can retire two at a time

- Operations internally broken down into “micro-ops”
- Cache micro-ops - like a hardware JIT?!

Theoretical peak: 83.2 GFlop/s?
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http://ark.intel.com/products/75991/Intel-Core-i5-4288U-Processor-3M-Cache-up-to-3_10-GHz

- Special features: SIMD instructions, maybe FMAs, ...
- Compiler understands how to utilize these in principle
- Rearranges instructions to get a good mix
- Tries to make use of FMAs, SIMD instructions, etc
- In practice, needs some help:
- Set optimization flags, pragmas, etc
- Rearrange code to make things obvious and predictable

- Use special intrinsics or library routines
- Choose data layouts, algorithms that suit the machine

- Goal: You handle high-level, compiler handles low-level.
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Memory matters.
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- Theoretical peak flop rate: 83.2 GFlop/s

- Peak memory bandwidth: 25.6 GB/s

- Arithmetic intensity = flops / memory accesses

- Example: Sum several million doubles (Al = 1) - how fast?
- So what can we do? Not much if lots of fetches, but...



Programs usually have locality

- Spatial locality: things close to each other tend to be
accessed consecutively

- Temporal locality: use a “working set” of data repeatedly

Cache hierarchy built to use locality.



- Memory latency = how long to get a requested item
- Memory bandwidth = how fast memory can provide data
- Bandwidth improving faster than latency

Caches help:

- Hide memory costs by reusing data
- Exploit temporal locality

- Use bandwidth to fetch a cache line all at once
- Exploit spatial locality

- Use bandwidth to support multiple outstanding reads

- Overlap computation and communication with memory
- Prefetching

This is mostly automatic and implicit.



- Store cache lines of several bytes

- Cache hit when copy of needed data in cache
- Cache miss otherwise. Three basic types:
- Compulsory miss: never used this data before
- Capacity miss: filled the cache with other things since this
was last used — working set too big
- Conflict miss: insufficient associativity for access pattern
- Associativity
- Direct-mapped: each address can only go in one cache
location (e.g. store address xxxx1101 only at cache location
1101)
- n-way: each address can go into one of n possible cache
locations (store up to 16 words with addresses xxxx1101 at
cache location 1101).

Higher associativity is more expensive.
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Teaser

We have N = 10° two-dimensional coordinates, and want their
centroid. Which of these is faster and why?

1. Store an array of (x;,y;) coordinates. Loop i and
simultaneously sum the x; and the y;.

2. Store an array of (xj,y;) coordinates. Loop i and sum the x;,
then sum the y; in a separate loop.

3. Store the x; in one array, the y; in a second array. Sum the
X, then sum the y;.

Let's see!
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Caches on my laptop (I think)

- 32 KB L1 data and memory caches (per core),
8-way associative

- 256 KB L2 cache (per core),
8-way associative

- 3 MB L3 cache (shared by all cores)
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A memory benchmark (membench)

for array A of length L from 4 KB to 8MB by 2x
for stride s from 4 bytes to L/2 by 2x
time the following loop
for i = 0 to L by s
load A[i] from memory
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membench on my laptop — what do you see?
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membench on my laptop — what do you see?
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membench on my laptop — what do you see?
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- Vertical: 64B line size (2°), 4K page size (2"?)
- Horizontal: 32K L1 (2'°), 256K L2 (2'8), 6 MB L3
- Diagonal: 8-way cache associativity, 512 entry L2 TLB
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membench on Totient - what do you see?
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Even for simple programs, performance is a complicated
function of architecture!

- Need to understand at least a little to write fast programs

- Would like simple models to help understand efficiency
- Would like common tricks to help design fast codes
- Example: blocking (also called tiling)
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The Roofline Model.
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Roofline model

S. Williams, A. Waterman, D. Patterson, “Roofline: An Insightful
Visual Performance Model for Floating-Point Programs and
Multicore Architectures,” CACM, April 2009.
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http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf

Roofline plot basics

Log-log plot (base 2)

- x: Operational intensity (flops/byte)
- y: Attainable performance (GFlop/s)
- Diagonals: Memory limits

- Horizontals: Compute limits

- Papers: https://crd.lbl.gov/departments/
computer-science/PAR/research/roofline/

- Tools: https://bitbucket.org/berkeleylab/
cs-roofline-toolkit
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https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://bitbucket.org/berkeleylab/cs-roofline-toolkit

