
Bindel, Fall 2017 Parallel Computing (CS 5220)

Performance analysis
2017-08-24

Performance analysis is a rich area that combines experiment, theory, and
engineering. In this class, we will explore all three. The purpose of this note
is to set the stage; more specifically, we want to introduce

1. Performance analysis concepts that will recur throughout the course.

2. Common misconceptions and deceptions regarding performance

High performance computing (HPC), like most engineering disciplines, is
about tradeoffs. The goal is to compute an answer that is good enough, fast
enough, within the constraints of the available computing resources. But it is
often not so simple to measure either solution quality or resource constraints.

1 What to measure?

The usual measure of performance in HPC is time to solution: the number
of seconds of wall clock time to satisfy some termination criterion. It is
important to specify wall clock time rather than CPU time, because fully
utilizing all the CPUs in a large parallel machine is extremely challenging!
In a scaling study, one attempts to quantify how the time to solution depends
on the computing resources available, and possibly on the problem size or
solution quality. To understand the results of a scaling study, it is often
useful to look at measures derived from wall clock time, such as the effective
flop rate, speedup, scaled speedup, or parallel efficiency. In addition to wall
clock time, one might want to understand how much memory, disk space,
bandwidth, or power is used in a given computation. But figuring out what
to plot is a critical part of designing a performance study, and more exotic
measures (flops/GW?) sometimes do more to obscure performance issues
than to illuminate them.

Takeaway Think twice if you see anything but wall clock time to solution
reported as a primary performance measure!



Bindel, Fall 2017 Parallel Computing (CS 5220)

2 Basic performance concepts

Most performance studies involve at least two parameters:

• n – a measure of the problem size

• p – the number of processors

Understanding how run time varies these two parameters (and others)
gives a general framework for understanding performance. A study in which p
varies is called a scaling study, and is at the heart of most parallel performance
analyses.

2.1 Algorithm complexity

The starting point for most performance analysis involves understanding how
work scales with problem size. For example, computing the product of two
n×n floating point matrices takes about 2n3 flops (floating point operations):
n3 adds and n3 multiplies. In most introductory computer science classes,
we focus use order notation to give a crude but concise description of how
the work performed by an algorithm scales with problem size; that is, matrix
multiply is O(n3). In an ideal world, we would say the time is proportional
to n3, and determine the proportionality constant by a single experiment. In
practice, things are rarely so simple.

Simple asymptotic complexity models are absolutely the right place to
start when thinking about work done by a computation, but they are only
a starting point. The “hidden constant” in the order notation used in most
complexity estimates can vary dramatically depending both on the nature of
the algorithm and on details of how it is implemented – a well-tuned matrix
multiplication routine can be orders of magnitude faster than a naive imple-
mentation on the same hardware. Moreover, in modern machines, the cost
to communicate data can easily exceed the cost of floating point operations;
an overly crude complexity estimate that does not account for this fact may
yield wildly inaccurate predictions.

Takeaway Algorithm complexity tells us how work scales with problem
size – useful, but not all there is to performance.



Bindel, Fall 2017 Parallel Computing (CS 5220)

2.2 Response time and throughput

Some algorithms run to completion, then return a result more-or-less instan-
taneously at the end. In many cases, though, a computation will produce
intermediate results. In this case, there are usually two quantities of interest
in characterizing the performance:

• The time to first result (response time)

• Rate at which results are subsequently produced (throughput)

For problems involving information retrieval or communication, we usu-
ally refer to these as the latency and bandwidth. But the idea of an initial
response time and subsequent throughput rate applies more broadly.

When we think about concepts of latency and throughput, we are measur-
ing performance not by a single number (time to completion), but by a curve
of utility versus time. When we think about a fixed latency and through-
put, we are implicitly defining a piecewise linear model of utility versus time:
there’s an initial period of zero utility, followed by a period of linearly in-
creasing utility with constant slope (until completion). The piecewise linear
model is attractive in its simplicity, but more complex models are sometimes
useful. For example, to understand the performance of an iterative solver,
the right way to measure performance might be in terms of approximation
error versus time.

Takeaway Time to completion is not always the right measure of progress.

2.3 Theoretical machine limits

The theoretical rate at which a code could run depends both on the char-
acteristics of the code and on characteristics of the machine on which it
runs. These include the theoretical peak flop rate the maximum rate at which
floating point operations that could possibly be executed. Even this is not
so straightforward to estimate, since modern processors are often capable
of launching more than one floating point instruction in each cycle, which
may be vector floating point instructions that can do several distinct floating
point operations.



Bindel, Fall 2017 Parallel Computing (CS 5220)

In addition to the computational capacity of the machine, it is important
to understand something about the latency and peak bandwidth of any com-
munication channels, I/O devices, and memory subsystems. For I/O and
memory, one may also have to worry about the peak capacity ; even if there
is ample storage for a computation’s data in main memory, it’s hard to get
good performance unless the working set that is most frequently accessed fits
in relatively fast (and small) cache memories.

We will discuss some basics of machine architecture in the coming classes
in order to set the context for understanding the theoretical limits of the
machine. For now, we simply note that these limits are not so simple, and it
is not simple to get to them: with tuning, a real code might make it to 10%
of peak (depending on the nature of the computation).

2.4 Speedup, efficiency, and Amdahl’s law

In a strong scaling study, one fixes the problem size n and studies performance
as a function of p. The usual measure of scalability is the speedup of a parallel
computation:

S(p) =
Tserial

Tparallel(p)

where Tserial is the performance of the best serial code available and Tparallel(p)
is the time required with p processors. The parallel efficiency is the ratio of
the speedup to the ideal linear speedup:

Efficiency(p) =
S(p)

p
=

Tserial

pTparallel(p)
.

A speedup plot of speedup versus p is a standard graphic in most of the HPC
literature, and is simultaneously one of the most useful and one of the most
abused plots around. We return to some of the issues with deceptive speedup
plots later in these notes.

We rarely achieve ideal linear speedup (100% efficiency), in part because
most real codes include some work that is difficult or impossible to paral-
lelize. If α is the fraction of the serial work that cannot be parallelized, then
Amdahl’s law tells us the best scaling we can hope for is

S(p) ≤ 1

α + (1− α)/p
≤ 1

α
.



Bindel, Fall 2017 Parallel Computing (CS 5220)

For example, if 10% of the work in a given computation is serial, we cannot
hope for more than a 10× speedup no matter how many processors we use.
In practice, this is usually a generous estimate: some overheads usually grow
with the number of processors, so that past a certain number of processors
the speedup often doesn’t just level off, but actually decreases.

Takeaway Speedup quantifies scalability. For fixed problems, Amdahl’s
law tells us us that serial work limits the max speedup.

2.5 Scaled speedup, weak scaling, and Gustafson’s law

In strong scaling studies, we assume we are interested in a fixed problem
size n. In many cases, though, we are not interested in using ever-more
parallelism to get faster answers to the same problems; rather, we want to
use increased parallelism to solve bigger problems. In weak scaling studies,
we usually consider the scaled speedup

S(p) =
Tserial(n(p))

Tparallel(n(p), p)

where n(p) is a family of problem sizes chosen so that the work per processor
remains constant. For weak scaling studies, the analog of Amdahl’s law is
Gustafson’s law ; if a is the amount of serial work and b is the parallelizable
work, then

S(p) ≤ a+ bP

a+ b
= p− α(p− 1)

where α = a/(a+ b) is the fraction of serial work.

Takeaway Fixing the problem size (strong scaling) is not the only way.
Sometimes weak scaling studies are more instructive.

2.6 Pleasing parallelism and high throughput

A problem that can be decomposed into many independent tasks with little
overhead used to be called embarrassingly parallel ; these days, it is sometimes
called pleasingly parallel instead. Monte Carlo simulations and many “big
data analytics” tasks are pleasingly parallel. Because pleasingly parallel jobs
have very low overheads associated with serial work or with synchronization,



Bindel, Fall 2017 Parallel Computing (CS 5220)

they offer a high level of scalability, even on machines where communica-
tion and synchronization is expensive. Frameworks like Google’s MapReduce
thrive in part because there are indeed many embarassingly parallel compu-
tations in the world. At the same time, there are also many jobs that are
not embarrassingly parallel.

The communities that deal primarily with embarassingly parallel jobs
tend to be different than the traditional scientific HPC communities. In
particular, where HPC usually focuses on time to completion (with some
caveats noted above), communities focused on embarrassingly parallel tasks
usually care about high throughput. If we sometimes refer to HTC (high-
throughput computing) in this class, this is what we mean.

Takeaway Some tasks are easy to parallelize. Some are not. It helps to
know the difference.

2.7 Theoretical and empirical performance models

With four parameters, I can fit an elephant, and with five, I can
make him wiggle his trunk.
– Von Neumman

A performance model predicts the performance of some code as a function
of problem size, parallelism, and perhaps other parameters. Performance
models are useful to the extent that they help us predict whether we can meet
a performance goal and to the extent that they can guide us to where our
codes most need improvement (or where they will run into scaling bottlenecks
on future machines). Because models reflect our understanding, they may be
incomplete; indeed, the most useful models are necessarily incomplete, since
otherwise they are too cumbersome to reason about! Experiments reflect
what really happens, and are a critical counterpoint to models.

The division between performance models and experiments is not sharp.
In the extreme case, machine learning and other empirical function fitting
methods can be used to estimate how performance depends on different pa-
rameters under very weak assumptions. When strongly empirical models
have many parameters, a lot of data is needed to fit them well; otherwise,
the models may be overfit, and do a poor job of predicting performance ex-
cept away from the training data. This may be appropriate for cases where
the model is used as the basis for auto-tuning a commonly-used kernel for a

https://en.wikiquote.org/wiki/John_von_Neumann


Bindel, Fall 2017 Parallel Computing (CS 5220)

particular machine architecture, for example. But performance experiments
often aren’t cheap – or at least they aren’t cheap in the regime where people
most care about performance – and so a simple, theory-grounded model is
often preferable. There’s an art to balancing what should be modeled and
what should be treated semi-empirically, in performance analysis as in the
rest of science and engineering.

Takeaway Both theory and experiment are needed for performance mod-
eling.

2.8 Applications, benchmarks, and kernels

The performance of application codes is usually what we really care about.
But application performance is generally complicated. The main computa-
tion may involve alternating phases, each complex in its own right, in addition
to time to load data, initialize any data structures, and post-process results.
Because there are so many moving parts, its also hard to use measurements
of the end-to-end performance of a given code on a given machine to infer
anything about the speed expected of other codes. Sometimes it’s hard even
to tell how the same code will run on a different machine!

Benchmark codes serve to provide a uniform way to compare the perfor-
mance of different machines on “characteristic” workloads. Usually bench-
mark codes are simplified versions of real applications (or of the computation-
ally expensive parts of real applications); examples include the NAS parallel
benchmarks, the Graph 500 benchmarks, and (on a different tack) Sandia’s
Mantevo package of mini-applications.

Kernels are frequently-used subroutines such as matrix multiply, FFT,
breadth-first search, etc. Because they are building blocks for so many higher-
level codes, we care about kernel performance a lot; and a kernel typically
involves a (relatively) simple computation. A common first project in parallel
computing classes is to time and tune a matrix multiplication kernel.

Parallel patterns (or “dwarfs”) are abstract types of computation (like
dense linear algebra or graph analysis) that are higher level than kernels and
more abstract than benchmarks. Unlike a kernel or a benchmark, a pattern
is too abstract to benchmark. On the other hand, benchmarks can elucidate
the performance issues that occur on a given machine with a particular type
of computation.

https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://www.graph500.org/
https://mantevo.org/


Bindel, Fall 2017 Parallel Computing (CS 5220)

Takeaway Application performance is complicated. We try to simplify by
looking at benchmark codes and kernels, or by understanding the perfor-
mance characteristics of common computational patterns.

3 Designing performance experiments

3.1 Timing and profiling

Profiling involves running a code and measuring how much time (and re-
sources) are used in different parts of the code. For codes that show any
data-dependent performance, it is important to profile on something real-
istic, as the time breakdown will depend on the use case. One can profile
with different levels of detail. The simplest case often involves manually
instrumenting a code with timers. There are also tools that automatically
instrument either the source code or binary objects to record timing infor-
mation. Sampling profilers work differently; they use system facilities to
interrupt the program execution periodically and measure where the code
is. It is also possible to use hardware counters to estimate the number of
performance-relevant events (such as cache misses or flops) that have oc-
curred in a given period of time. We will discuss these tools in more detail
as we get into the class (and we’ll use some of them on our codes).

As with everything else, there are tradeoffs in running a profiler: methods
that provide fine-grained information can produce a lot of data, enough that
storing and processing profiling data can itself be a challenge. There is also
an issue that very fine-grained measurement can interfere with the software
being measured. It is often helpful to start with a relatively crude, lightweight
profiling technology in order to first find what’s interesting, then focus on
the interesting bits for more detailed experimentation.

Profiling has different goals. The most common reason to profile is to find
performance bottlenecks : in many codes, the majority of the time is spent in
one or a few pieces of a large code base, and it makes sense to find where the
time is spent in order to spend tuning time in a sensible way. Good compilers
can also use profile data as the basis of profile-directed optimization.



Bindel, Fall 2017 Parallel Computing (CS 5220)

3.2 Experimental issues

Compared to most experimental sciences, computer scientists have it easy:
our only safety issues involve RSI, and if an experiment breaks, we can just
re-run it with little additional work. But, as with other experimental work,
performance analysis does require that we understand issues that lead to
variation in results. For example:

• When running the same computation twice (in the same process), the
second run will often be faster because the first run “warms the cache.”
We will discuss this in more detail when we discuss computer architec-
ture basics.

• Two codes running on the same machine can interfere with each other
(e.g. by stealing memory bandwidth or thrashing shared caches), even
if they are nominally not trying to use the same cores.

• Timers have finite resolution, and so it may be necessary to run a short
code segment repeatedly in order to get use enough time to get an
accurate measurement.

All this suggests that it is important to understand the limitations of ex-
perimental measurement, and also the environmental factors that cause varia-
tions in measurements. We will return to these issues periodically throughout
the class.

4 Engineering for performance

Performance models and experiments help us both to design new codes for
high performance and to tune the performance of existing codes. We will
spend a lot of time talking about engineering for performance over the course
of the semester, but let’s take a moment now to talk about a few recurring
themes.

4.1 Know when to tune

There are many reasons not to tune code:

• Tuning takes human time. If the human time is more expensive than
the computation time saved, it’s not worth it.



Bindel, Fall 2017 Parallel Computing (CS 5220)

• Performance is often in tension with maintainability, generality, and
other nice software design properties. If tuning for performance means
making a mess of the code base, it may not be worth it.

• Most codes have bottlenecks where the majority of the time is spent.
It doesn’t make sense to tune something that already takes little time.

We will mostly focus in the class on what to tune, but in general it is
worth asking also why a code should be tuned.

4.2 Tune data structures

On modern machines, memory access and communication patterns are criti-
cal to performance. Because of this, tuning often involves looking not at code
but at the data that the code manipulates. Many of the optimizations we
will discuss in this class involve data structures: rearranging arrays for unit
stride, simplifying structures with many levels of indirection, or using single
precision for high-volume floating point data, etc. With a proper interface
abstraction, the fastest way to high performance often involves replacing a
low-performance data structure with an equivalent high-performance struc-
ture.

4.3 Expose parallelism

Achieving good performance on modern machines is increasingly about mak-
ing good use of parallel computing resources. This means not only explicit
parallelism (using threads or MPI, for example), but also taking advantage
of the parallelism available inside a single core. A lot of the class will involve
figuring out where there are opportunities for parallelism, and exposing those
opportunities to compilers, frameworks, or ourselves!

4.4 Use the right tools

Performance tuning is hard. We make our lives easier by using the best
tools we can get our hands on: good compilers, well-tuned libraries and
frameworks, profilers and performance visualization tools, etc. And when
the right tools don’t exist, sometimes we get to make them ourselves!



Bindel, Fall 2017 Parallel Computing (CS 5220)

5 Misconceptions and deceptions

It ain’t ignorance causes so much trouble; it’s folks knowing so
much that ain’t so.
– Josh Billings

One of the common findings in pedagogy research is that an important
part of learning an area is overcoming common misconceptions about the
area; see, e.g. [6], [7], [8]. And there are certainly some common miscon-
ceptions about high performance computing! Some misconceptions are ex-
acerbated by bad reporting, which leads to deceptions and delusions about
performance.

5.1 Incorrect mental models

Algorithm = implementation We can never time algorithms. We only
time implementations, and implementations vary in their performance. In
some cases, implementations may vary by orders of magnitude in their per-
formance!

Asymptotic cost is always what matters We can’t time algorithms,
but we can reason about their asymptotic complexity. When it comes to
scaling for large n, the asymptotic complexity can matter a lot. But compar-
ing the asymptotic complexity of two algorithms for modest n often doesn’t
make sense! QuickSort may not always be the fastest algorithm for sorting
a list with ten elements. . .

Simple serial execution Hardware designers go to great length to present
us with the interface that modern processor cores execute a instructions
sequentially. But this interface is not the actual implementation. Behind the
scenes, a simple stream of x86 instructions may be chopped up into micro-
instructions, scheduled onto different functional units acting in parallel, and
executed out of order. The effective behavior is supposed to be consistent
with sequential execution – at least, that’s what happens on one core – but
that illusion of sequential execution does not extend to performance.

Flops are all that count Data transfers from memory to the processor
are often more expensive than the computations that are run on that data.

http://www.famous-quotes.com/author.php?page=3&total=81&aid=733
http://www.lifescied.org/content/13/2/179.abstract
http://aer.sagepub.com/content/50/5/1020
http://sydney.edu.au/science/physics/pdfs/research/super/PhD(Muller).pdf


Bindel, Fall 2017 Parallel Computing (CS 5220)

Flop rates are what matter What matters is time to solution. Often,
the algorithms that get the best flop rates are not the most asymptotically
efficient methods; as a consequence, a code that uses the hardware less effi-
ciently (in terms of flop rate) may still give the quickest time to solution.

All speedup is linear See the comments above about Amdahl’s law and
Gustafson’s law. We rarely achieve linear speedup outside the world of em-
barrassingly parallel applications.

All applications are equivalent Performance depends on the nature of
the computation, the nature of the implementation, and the nature of the
hardware. Extrapolating performance from one computational style, imple-
mentation, or hardware platform to another is something that must be done
very carefully.

6 Deceptions and self-deceptions

In 1991, David Bailey wrote an article on “Twelve Ways to Fool the Masses
When Giving Performance Results on Parallel Computers”. It’s still worth
reading (as are various follow-up pieces – see the Further Reading section),
and highlights issues that we still see now. To summarize slightly, here’s my
version of the list of common performance deceptions:

6.1 Unfair comparisons and strawmen

A common sin in scaling studies is to compare the performance of a parallel
code on p processors against the performance of the same code with p = 1.
This ignores the fact that the parallel code may have irrelevant overheads, or
(worse) that there may be a better organization for a single processor. Con-
sequently, the speedups no longer reflect the reasonable expectation of the
reader that this is the type of performance improvement they might see when
going to a good parallel implementation from a good serial implementation.
Of course, it’s also possible to see great speedups by comparing a bad serial
implementation to a correspondingly bad parallel implementation: a lot of
unnecessary work can hide overheads.

A similar issue arises when computing with accelerators. Enthusiasts
of GPU-accelerated codes often claim order of magnitude (or greater) per-

http://www.davidhbailey.com/dhbpapers/twelve-ways.pdf
http://www.davidhbailey.com/dhbpapers/twelve-ways.pdf


Bindel, Fall 2017 Parallel Computing (CS 5220)

formance improvements over using a CPU alone. Often, this comes from
explicitly tuning the GPU code and not the CPU code. A 2010 paper out
of Georgia Tech gives several examples where, after tuning, two quad-core
CPU sockets gave roughly the same performance as one or two GPUs.

6.2 Using the wrong measures

If what you care about is time to solution, you might not really care so much
about watts per GFlop (though you certainly do if you’re responsible for sup-
plying power for an HPC installation). More subtlely, you don’t necessarily
care about scaled speedup if the natural problem size is fixed (e.g. in some
graph processing applications).

6.3 Deceptive plotting

There are so many ways this can happen:

• Use of a log scale when one ought to have a linear scale, and vice-versa;

• Choosing an inappropriately small range to exaggerate performance
differences between near-equivalent options;

• Not marking data points clearly, so that there is no visual difference
between data falling on a straight line because it closely follows a trend
and data falling on a straight line because there are two points.

• Hiding poor scalability by plotting absolute time vs numbers of pro-
cessors so that nobody can easily see that the time for 100 processors
(a small bar relative to the single-processor time) is equivalent to the
time for 200 processors.

• And more!

Plots allow readers to absorb trends very quickly, but it also makes it
easy to give wrong impressions.

http://newport.eecs.uci.edu/~amowli/resources/papers/vuduc2010-hotpar.pdf
http://newport.eecs.uci.edu/~amowli/resources/papers/vuduc2010-hotpar.pdf


Bindel, Fall 2017 Parallel Computing (CS 5220)

6.4 Too much faith in models

Any model has limits of validity, and extrapolating outside those limits leads
to nonsense. Treat with due skepticism claims that – according to some
model – a code will run an order of magnitude faster in an environment
where it has not yet been run.

6.5 Undisclosed tweaks

There are many ways to improve performance. Sometimes, better hardware
does it; sometimes, better tuned code; sometimes, algorithmic improvements.
Claiming that a jump in performance comes from a new algorithm without
acknowledging differences in the level of tuning effort, or acknowledging non-
algorithmic changes (e.g. moving from double precision to single precision)
is deceptive, but sadly common. Hiding tweaks in the fine print in the hopes
that the reader is skimming doesn’t make this any less deceptive!

7 Rules for presenting performance results

In the intro to the book Performance Tuning of Scientific Applications, David
Bailey suggests nine guidelines for presenting performance results without
misleading the reader. Paraphrasing only slightly, these are:

1. Follow rules on benchmarks

2. Only present actual performance, not extrapolations

3. Compare based on comparable levels of tuning

4. Compare wall clock times (not flop rates)

5. Compute performance rates from consistent operation counts based on
the best serial codes.

6. Speedup should compare to best serial version. Scaled speedup plots
should be clearly labeled and explained.

7. Fully disclose information affecting performance: 32/64 bit, use of as-
sembly, timing of a subsystem rather than the full system, etc.

http://www.lifescied.org/content/13/2/179.abstract


Bindel, Fall 2017 Parallel Computing (CS 5220)

8. Don’t deceive skimmers. Take care not to make graphics, figures, and
abstracts misleading, even in isolation.

9. Report enough information to allow others to reproduce the results. If
possible, this should include

• The hardware, software and system environment

• The language, algorithms, data types, and coding techniques used

• The nature and extent of tuning

• The basis for timings, flop counts, and speedup computations

8 Questions

1. A given program spends 10% of its time in an initial startup phase, and
then 90% of its time in work that can be easily parallelized. Assuming
a machine with homogeneous cores, plot the idealized speedup and
parallel efficiency of the overall code according to Amdahl’s law for up
to 128 cores. If you know how, you should use a script to produce this
plot, with both the serial fraction and the maximum number of cores
as parameters.

2. Suppose a particular program can be partitioned into perfectly inde-
pendent tasks, each of which takes time τ . Tasks are set up, scheduled,
and communicated to p workers at a (serial) central server; this takes
an overhead time α per task. What is the theoretically achievable
throughput (tasks/time)?

3. Under what circumstances is it best to not tune?

4. The class cluster consists of eight nodes and fifteen Xeon Phi accel-
erator boards (details under the “Computing platform” section of the
syllabus). Based on an online search for information on these systems,
what do you think is the theoretical peak flop rate (double-precision
floating point operations per second)? Show how you computed this,
and give URLs for where you got the parameters in your calculation.
(We will return to this question again after we cover some computer
architecture.)

5. What is the theoretical peak flop rate for your own machine?

/syllabus.html
/syllabus.html


Bindel, Fall 2017 Parallel Computing (CS 5220)

9 Further reading

1. David Bailey, Twelve Ways to Fool the Masses When Giving Perfor-
mance Results on Parallel Computers.

2. David Bailey, Misleading Performance Reporting in the Supercomput-
ing Field.

3. David Bailey, Twelve Ways to Fool the Masses: Fast Forward to 2011.

4. George Hager, Modern “Fooling the Masses” stunts blog posts.

5. David Bailey, Robert Lucas, and Samuel Williams (eds), Performance
Tuning of Scientific Applications.

6. Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi, Murat (Efe)
Guney, and Aashay Shringarpure. On the Limits of GPU Acceleration.

http://www.davidhbailey.com/dhbpapers/twelve-ways.pdf
http://www.davidhbailey.com/dhbpapers/twelve-ways.pdf
http://www.davidhbailey.com/dhbpapers/mislead.pdf
http://www.davidhbailey.com/dhbpapers/mislead.pdf
http://www.davidhbailey.com/dhbtalks/dhb-12ways.pdf
http://blogs.fau.de/hager/archives/category/fooling-the-masses
http://www.amazon.com/Performance-Scientific-Applications-Chapman-Computational-ebook/dp/B00UV98OHG
http://www.amazon.com/Performance-Scientific-Applications-Chapman-Computational-ebook/dp/B00UV98OHG
http://newport.eecs.uci.edu/~amowli/resources/papers/vuduc2010-hotpar.pdf

	What to measure?
	Basic performance concepts
	Algorithm complexity
	Response time and throughput
	Theoretical machine limits
	Speedup, efficiency, and Amdahl's law
	Scaled speedup, weak scaling, and Gustafson's law
	Pleasing parallelism and high throughput
	Theoretical and empirical performance models
	Applications, benchmarks, and kernels

	Designing performance experiments
	Timing and profiling
	Experimental issues

	Engineering for performance
	Know when to tune
	Tune data structures
	Expose parallelism
	Use the right tools

	Misconceptions and deceptions
	Incorrect mental models

	Deceptions and self-deceptions
	Unfair comparisons and strawmen
	Using the wrong measures
	Deceptive plotting
	Too much faith in models
	Undisclosed tweaks

	Rules for presenting performance results
	Questions
	Further reading

