
1 Introduction
CS 4220/5223/Math 4260 teaches numerical methods for linear algebra, non-
linear equation solving, and optimization. We used some examples from dif-
ferential equations and function approximation, but these topics are mostly
left to CS 4210/Math 4250. Ideally, you should now understand some ba-
sic methods, well enough to choose methods suited to your problems (and
vice-versa). You should also know how to tweak the standard strategies for
particular types of problems.

Like most of CS1, numerical methods come in layers. For example, solving
a large, difficult optimization problem or nonlinear systems is likely to involve

• A continuation strategy to “sneak up” on the hard problem by solving
a sequence of easier nonlinear problems.

• A Newton iteration (or a related iteration) to solve each of these non-
linear problems by repeatedly approximating them with linear ones.

• A Krylov subspace iteration to solve the large linear systems of equa-
tions that appear during Newton iteration.

• A sparse matrix factorization to solve a preconditioner problem that
approximates the solution of the large linear systems without the cost
of solving them directly.

• And dense matrix factorizations that solve dense blocks that appear in
the course of factoring the sparse matrix.

Each layer involves choices about methods, parameters, or termination cri-
teria. These are guided by a mix of general error analysis, an understanding
of complexity of operations, and problem-specific concerns. Putting together
a full solver stack like this is beyond the scope of a first course, but we have
seen all these ingredients this semester. Through projects, and some of the
special topics at the end of the semester, we have also seen how these ideas
come together.

The point of these review notes is not to supplant earlier lecture notes
or the book, but to give a retrospective survey of ground we’ve covered in
the past couple months. This is also an excuse for me – and you! – to think
about the types of problems I might ask on a final exam.

1And, according to Shrek, like ogres and onions.

1



2 Overview
The meat of this class is factorizations and iterations.

Factorization involves rewriting a matrix as a product of matrices with
some special structure; the big examples from the course are:

PA = LU LU factorization / Gaussian elimination
A = RTR Cholesky
A = QR QR factorization
A = UΣV T Singular Value Decomposition (SVD)
A = UTUT Schur factorization

We discussed the computation of the first three factorizations in enough detail
to implement something, and touched more lightly on decompositions for the
SVD and Schur factorization. These factorizations provide an efficient way
to solve linear systems and least squares problems, but can also be used for
various other purposes, from determinants to data compression.

We use iterations to solve nonlinear problems, and even for large linear
problems where factorizations are too expensive. The chief building block is
fixed point iterations of the form

xk+1 = G(xk).

The most important fixed point iteration is Newton’s iteration, which plays a
central role in nonlinear equation solving and optimization. Though Newton
on its own only converges locally, and though Newton steps may be too
expensive, the Newton framework gives us a way of reasoning about a variety
of iterations. Fixed point iterations (stationary iterations) for linear systems,
such as Jacobi and Gauss-Seidel iteration, are also an important building
block for preconditioning modern Krylov subspace iterations such as GMRES
and CG.

When we solve a problem numerically, we care about getting the answer
fast enough and right enough. To understand the “fast enough” part, we
need to understand the cost of computing and using factorizations and the
rate of convergence of iterations. To understand the “right enough” part, we
need to understand how errors are introduced into a numerical computation
through input error, roundoff, or termination of iterations, and how those
errors propogate. Our standard strategy is to relate forward error to the

2



backward error or residual error (which can often be bounded in the context
of a particular algorithm or termination criterion) via a condition number
(which depends on the problem). The key tools here are Taylor expansion
(usually just to first order) and matrix and vector norm bounds.

3 Background
I assume intro courses in calculus and linear algebra, enough programming
coursework to write and debug simple Julia scripts, and the magical “suf-
ficient mathematical maturity.” But people forget things, and some of the
background needed for numerics isn’t always taught in intro courses. So here
are some things you should know that you might not remember from earlier
work.

3.1 Linear algebra background
In what follows, as in most of what I’ve done in class, I will mostly stick with
real vector spaces.

Vectors You should know a vector as:

• An object that can be scaled or added to other vectors.

• A column of numbers, often stored sequentially in computer memory.

We often map between the two pictures using a basis. For example, a basis
for the vector space of quadratic polynomials in one variable is {1, x, x2};
using this basis, we might concretely represent a polynomial 1 + x2/2 in
computer memory using the coefficient vector

c =

 1
0
0.5

 .
In numerical linear algebra, we use column vectors more often than row
vectors, but both are important. A row vector defines a linear function over
column vectors of the same length. For example, in our polynomial example,
suppose we want the row vector corresponding to evaluation at −1. With

3



respect to the power basis {1, x, x2} for the polynomial space, that would
give us the row vector

wT =
[
1 −1 1

]
Note that if p(x) = 1 + x2/2, then

p(−1) = 1 + (−1)2/2 = wT c =
[
1 −1 1

]  1
0
0.5

 .
Vector norms and inner products A norm ‖·‖ measures vector lengths.
It is positive definite, homogeneous, and sub-additive:

‖v‖ ≥ 0 and ‖v‖ = 0 iff v = 0

‖αv‖ = |α|‖v‖
‖u+ v‖ ≤ ‖u‖+ ‖v‖.

The three most common vector norms we work with are the Euclidean norm
(aka the 2-norm), the ∞-norm (or max norm), and the 1-norm:

‖v‖2 =
√∑

j

|vj|2

‖v‖∞ = max
j

|vj|

‖v‖1 =
∑
j

|vj|

Many other norms can be related to one of these three norms.
An inner product 〈·, ·〉 is a function from two vectors into the real numbers

(or complex numbers for an complex vector space). It is positive definite,
linear in the first slot, and symmetric (or Hermitian in the case of complex
vectors); that is:

〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0

〈αu,w〉 = α〈u,w〉 and 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉
〈u, v〉 = 〈v, u〉,

where the overbar in the latter case corresponds to complex conjugation.
Every inner product defines a corresponding norm

‖v‖ =
√

〈v, v〉

4



The inner product and the associated norm satisfy the Cauchy-Schwarz in-
equality

〈u, v〉 ≤ ‖u‖‖v‖.

The standard inner product on Rn is

x · y = yTx =
n∑

j=1

yjxj.

But the standard inner product is not the only inner product, just as the
standard Euclidean norm is not the only norm.

Matrices You should know a matrix as:

• A representation of a linear map

• An array of numbers, often stored sequentially in memory.

A matrix can also represent a bilinear function mapping two vectors into
the real numbers (or complex numbers for complex vector spaces):

(v, w) 7→ wTAv.

Symmetric matrices also represent quadratic forms mapping vectors to real
numbers

φ(v) = vTAv

We say a symmetric matrixA is positive definite if the corresponding quadratic
form is positive definite, i.e.

vTAv ≥ 0 with equality iff v = 0.

Many “rookie mistakes” in linear algebra involve forgetting ways in which
matrices differ from scalars:

• Not all matrices are square.

• Not all matrices are invertible (even nonzero matrices can be singular).

• Matrix multiplication is associative, but not commutative.

Don’t forget these facts!

5



Block matrices We often partition matrices into submatrices of different
sizes. For example, we might writea11 a12 b1

a21 a22 b2
c1 c2 d

 =

[
A b
cT d

]
, where A =

[
a11 a12
a21 a22

]
, b =

[
b1
b2

]
, c =

[
c1
c2

]
.

We can manipulate block matrices in much the same way we manipulate
ordinary matrices; we just need to remember that matrix multiplication does
not commute.

Matrix norms The matrices of a given size form a vector space, and we
can define a norm for such a vector space the same way we would for any other
vector space. Usually, though, we want matrix norms that are compatible
with vector space norms (a “submultiplicative norm”), i.e. something that
guarantees

‖Av‖ ≤ ‖A‖‖v‖

The most common choice is to use an operator norm:

‖A‖ ≡ sup
‖v‖=1

‖Av‖.

The operator 1-norm and ∞ norm are easy to compute

‖A‖1 = max
j

∑
i

|aij|

‖A‖∞ = max
i

∑
j

|aij|

The operator 2-norm is theoretically useful, but not so easily computed.
In addition to the operator norms, the Frobenius norm is a common

matrix norm choice:
‖A‖F =

√∑
i,j

|aij|2

Matrix structure We considered many types of structure for matrices
this semester. Some of these structures are what I think of as “linear al-
gebra structures,” such as symmetry, skew symmetry, orthogonality, or low
rank. These are properties that reflect behaviors of an operator or quadratic

6



form that don’t depend on the specific basis for the vector space (or spaces)
involved. On the other hand, matrices with special nonzero structure – trian-
gular, diagonal, banded, Hessenberg, or sparse – tend to lose those properties
under any but a very special change of basis. But these nonzero structures
or matrix “shapes” are very important computationally.

Matrix products Consider the matrix-vector product

y = Ax

You probably first learned to compute this matrix product with

yi =
∑
j

aijxj.

But there are different ways to organize the sum depending on how we want
to think of the product. We could say that yi is the product of row i of A
(written Ai,:) with x; or we could say that y is a linear combination of the
columns of A, with coefficients given by the elements of x. Similarly, consider
the matrix product

C = AB.

You probably first learned to compute this matrix product with

cij =
∑
k

aikbkj.

But we can group and re-order each of these sums in different ways, each of
which gives us a different way of thinking about matrix products:

Cij = Ai,:B:,j (inner product)
Ci,: = Ai,:B (row-by-row)
C:,j = AB:,j (column-by-column)

C =
∑
k

A:,kBk,: (outer product)

One can also think of organizing matrix multiplication around a partitioning
of the matrices into sub-blocks. Indeed, this is how tuned matrix multiplica-
tion libraries are organized.

7



Fast matrix products There are some types of matrices for which we can
compute matrix-vector products very quickly. For example, if D is a diagonal
matrix, then we can compute Dx with one multiply operation per element
of x. Similarly, if A = uvT is a rank-one matrix, we can compute Ax quickly
by recognizing that matrix multiplication is associative

Ax = (uvT )x = u(vTx).

Thus, we can apply A with one dot product (between v and x) and a scaling
operation.

Singular values and eigenvalues A square matrix A has an eigenvalue
λ and corresponding eigenvector v 6= 0 if

Av = λv.

A matrix is diagonalizable if it has a complete basis of eigenvectors v1, . . . , vn;
in this case, we write the eigendecomposition

AV = V Λ

where V =
[
v1 . . . vn

]
and Λ = diag(λ1, λ2, . . . , λn). If a matrix is not

diagonalizable, we cannot write the eigendecomposition in this form (we need
Jordan blocks and generalized eigenvectors). In general, even if the matrix
A is real and diagonalizable, we may need to consider complex eigenvalues
and eigenvectors.

A real symmetric matrix is always diagonalizable with real eigenvalues,
and has an orthonormal basis of eigenvectors q1, . . . , qn, so that we can write
the eigendecomposition

A = QΛQT .

For a nonsymmetric (and possibly rectangular) matrix, the natural decom-
position is often not the eigendecomposition, but the singular value decom-
position

A = UΣV T

where U and V have orthonormal columns (the left and right singular vectors)
and Σ = diag(σ1, σ2, . . .) is the matrix of singular values. The singular values
are non-negative; by convention, they should be in ascending order.

8



3.2 Calculus background
Taylor approximation in 1D If f : R → R has k continuous derivatives,
then Taylor’s theorem with remainder is

f(x+ z) = f(x) + f ′(x)z + . . .+
1

(k − 1)!
f (k−1)(x) +

1

k!
f (k)(x+ ξ)

where ξ ∈ [x, x+ z]. We usually work with simple linear approximations, i.e.

f(x+ z) = f(x) + f ′(x)z +O(z2),

though sometimes we will work with the quadratic approximation

f(x+ z) = f(x) + f ′(x)z +
1

2
f ′′(x)z2 +O(z3).

In both of these, when say the error term e(z) is O(g(z)), we mean that for
small enough z, there is some constant C such that

|e(z)| ≤ Cg(z).

We don’t need to remember a library of Taylor expansions, but it is useful
to remember that for |α| < 1, we have the geometric series

∞∑
j=0

αj = (1− α)−1.

Taylor expansion in multiple dimensions In more than one space di-
mension, the basic picture of Taylor’s theorem remains the same. If f : Rn →
Rm, then

f(x+ z) = f(x) + f ′(x)z +O(‖z‖2)
where f ′(x) ∈ Rm×n is the Jacobian matrix at x. If φ : Rn → R, then

φ(x+ z) = φ(z) + φ′(x)z +
1

2
zTφ′′(z)z +O(‖z‖3).

The row vector φ′(x) ∈ R1×n is the derivative of φ, but we often work with
the gradient ∇φ(x) = φ′(x)T . The Hessian matrix φ′′(z) is the matrix of
second partial derivatives of φ. Going beyond second order expansion of φ
(or going beyond a first order expansion of f) requires that we go beyond
matrices and vectors to work with tensors involving more than two indices.
For this class, we’re not going there.

9



Variational notation A directional derivative of a function f : Rn → Rm

in the direction u is
∂f

∂u
(x) ≡ d

ds

∣∣∣∣
s=0

f(x+ su) = f ′(x)u.

A nice notational convention, sometimes called variational notation (as in
“calculus of variations”) is to write

δf = f ′(x)δu,

where δ should be interpreted as “first order change in.” In introductory
calculus classes, this sometimes is called a total derivative or total differential,
though there one usually uses d rather than δ. There is a good reason for
using δ in the calculus of variations, though, so that’s typically what I do.

Variational notation can tremendously simplify the calculus book-keeping
for dealing with multivariate functions. For example, consider the problem
of differentiating A−1 with respect to every element of A. I would compute
this by thinking of the relation between a first-order change to A−1 (written
δ[A−1]) and a corresponding first-order change to A (written δA). Using the
product rule and differentiating the relation I = A−1A, we have

0 = δ[A−1A] = δ[A−1]A+ A−1δA.

Rearranging a bit gives

δ[A−1] = −A−1[δA]A−1.

One can do this computation element by element, but it’s harder to do it
without the computation becoming horrible.

Matrix calculus rules There are some basic calculus rules for expressions
involving matrices and vectors that are easiest to just remember. These are
naturally analogous to the rules in 1D. If f and g are differentiable maps
whose composition makes sense, the multivariate chain rule says

δ[f(g(x))] = f ′(g(x))δg, δg = g′(x)δx

If A and B are matrix-valued functions, we also have

δ[A+B] = δA+ δB

δ[AB] = [δA]B + A[δB],

δ[A−1B] = −A−1[δA]A−1B + A−1δB

10



and so forth. The big picture is that the rules of calculus work as well for
matrix-valued functions as for scalar-valued functions, and the main changes
account for the fact that matrix multiplication does not commute. You
should be able to convince yourself of the correctness of any of these rules
using the component-by-component reasoning that you most likely learned in
an introductory calculus class, but using variational notation (and the ideas
of linear algebra) simplifies life immensely.

A few other derivatives are worth having at your fingertips (in each of
the following formulas, x is assumed variable while A and b are constant

δ[Ax− b] = Aδx

δ[‖x‖2] = 2xT δx

δ

[
1

2
xTAx− xT b

]
= (δx)T (Ax− b)

δ

[
1

2
‖Ax− b‖2

]
= (Aδx)T (Ax− b)

and if f : Rn → Rn is given by fi(x) = φ(xi), then

δ[f(x)] = diag(φ′(x1), . . . , φ
′(xn)) δx.

3.3 CS background
Order notation and performance Just as we use big-O notation in cal-
culus to denote a function (usually an error term) that goes to zero at a
controlled rate as the argument goes to zero, we use big-O notation in algo-
rithm analysis to denote a function (usually run time or memory usage) that
grows at a controlled rate as the argument goes to infinity. For instance, if we
say that computing the dot product of two length n vectors is an O(n) oper-
ation, we mean that the time to compute the dot products of length greater
than some fixed constant n0 is bounded by Cn for some constant C. The
point of this sort of analysis is to understand how various algorithms scale
with problem size without worrying about all the details of implementation
and architecture (which essentially affect the constant C).

Most of the major factorizations of dense numerical linear algebra take
O(n3) time when applied to square n × n matrices, though some building
blocks (like multiplying a matrix by a vector or scaling a vector) take O(n2) or
O(n) time. We often write the algorithms for factorizations that take O(n3)

11



time using block matrix notation so that we can build these factorizations
from a few well-tuned O(n3) building blocks, the most important of which is
matrix-matrix multiplication.

Graph theory and sparse matrices In sparse linear algebra, we consider
matrices that can be represented by fewer than O(n2) parameters. That
might mean most of the elements are zero (e.g. as in a diagonal matrix), or
it might mean that there is some other low-complexity way of representing
the matrix (e.g. the matrix might be a rank-1 matrix that can be represented
as an outer product of two length n vectors). We usually reserve the word
“sparse” to mean matrices with few nonzeros, but it is important to recognize
that there are other data-sparse matrices in the world.

The graph of a sparse matrix A ∈ RN×N consists of a set of N vertices
V = {1, 2, . . . , N} and a set of edges E = {(i, j) : aij 6= 0}. While the
cost of general dense matrix operations usually depends only on the sizes
of the matrix involved, the cost of sparse matrix operations can be highly
dependent on the structure of the associated graph.

3.4 Julia background
Building matrices and vectors Julia gives us several standard matrix
and vector construction functions.

1 I # A UniformScaling object representing an identity
2 Matrix(I,n,n) # A dense matrix representation of an identity
3 Z = zeros(n,n) # n-by-n matrix of zeros
4 b = rand(n) # length n random vector (uniform)
5 e = ones(n) # length n vector of ones
6 D = Diagonal(e) # Diagonal matrix object (specialized type)
7 D = diagm(e) # Dense matrix representation of a diagonal matrix
8 e2 = diag(D) # Extract a matrix diagonal

Concatenating matrices and vectors In addition to functions for con-
structing specific types of matrices and vectors, Julia lets us put together
matrices and vectors by horizontal and vertical concatenation. This works
with matrices just as well as with vectors!

1 x = [1; 2] # Column vector
2 y = [1 2] # Row vector
3 M = [1 2; 3 4] # 2-by-2 matrix
4 M = [I A] # Horizontal matrix concatenation

12



Transpose and rearrangemenent Julia lets us rearrange the data inside
a matrix or vector in a variety of ways. In addition to the usual transposition
operation, we can also do “reshape” operations that let us interpret the same
data layout in computer memory in different ways.

1 # Reshape A to a vector, then back to a matrix
2 # Note: Julia is column-major
3 avec = A[:]
4 A = reshape(avec, n, n)
5

6 A = A' # Conjugate transpose
7 A = transp(A) # Simple transpose
8

9 idx = randperm(n) # Random permutation of indices
10 Ac = A[:,idx] # Permute columns of A
11 Ar = A[idx,:] # Permute rows of A
12 Ap = A[idx,idx] # Permute rows and columns

Submatrices, diagonals, and triangles Julia lets us extract specific
parts of a matrix, like the diagonal entries or the upper or lower triangle.

1 A = randn(6,6); # 6-by-6 random matrix
2 A[1:3,1:3] # Leading 3-by-3 submatrix
3 A[1:2:end,:] # Rows 1, 3, 5
4 A[:,3:end] # Columns 3-6
5

6 Ad = diag(A) # Diagonal of A (as vector)
7 A1 = diag(A,1) # First superdiagonal
8 Au = UpperTriangular(A) # Upper triangle view
9 Al = LowerTriangular(A) # Lower triangle view

Matrix and vector operations Julia provides a variety of elementwise
operations as well as linear algebraic operations. To distinguish elementwise
multiplication or division from matrix multiplication and linear solves or least
squares, we put a dot in front of the elementwise operations.

1 y = d.*x # Elementwise multiplication of vectors/matrices
2 y = x./d # Elementwise division
3 z = x + y # Add vectors/matrices
4 z = x .+ 1 # Add scalar to every element of a vector/matrix
5

6 y = A*x # Matrix times vector
7 y = x'*A # Vector times matrix

13



8 C = A*B # Matrix times matrix
9

10 # Don't use inv!
11 x = A\b # Solve Ax = b *or* least squares
12 y = b'/A # Solve yA = b^T or least squares

Things best avoided There are few good reasons to compute explicit ma-
trix inverses or determinants in numerical computations. Julia does provide
these operations. But if you find yourself typing inv or det in Julia, think
long and hard. Is there an alternate formulation? Could you use the forward
slash or backslash operations for solving a linear system?

3.5 Floating point
Most floating point numbers are essentially normalized scientific notation,
but in binary. A typical normalized number in double precision looks like

(1.b1b2b3 . . . b52)2 × 2e

where b1 . . . b52 are 52 bits of the significand that appear after the binary
point. In addition to the normalize representations, IEEE floating point in-
cludes subnormal numbers (the most important of which is zero) that cannot
be represented in normalized form; ±∞; and Not-a-Number (NaN), used to
represent the result of operations like 0/0.

The rule for floating point is that “basic” operations (addition, subtrac-
tion, multiplication, division, and square root) should return the true result,
correctly rounded. So a Julia statement

1 # Compute the sum of x and y (assuming they are exact)
2 z = x + y

actually computes ẑ = fl(x + y) where fl(·) is the operator that maps real
numbers to the closest floating point representation. For numbers that are in
the normalized range (i.e. for which fl(z) is a normalized floating point num-
ber), the relative error in approximating z by fl(z) is smaller in magnitude
than machine epsilon; for double precision, εmach = 2−53 ≈ 1.1× 10−16; that
is,

ẑ = z(1 + δ), |δ| ≤ εmach.

We can model the effects of roundoff on a computation by writing a sepa-
rate δ term for each arithmetic operation in Julia; this is both incomplete

14



(because it doesn’t handle non-normalized numbers properly) and imprecise
(because there is more structure to the errors than just the bound of ma-
chine epsilon). Nonetheless, this is a useful way to reason about roundoff
when such reasoning is needed.

3.6 Sensitivity, conditioning, and types of error
There are several different ways we can think about error. The most obvious
is the forward error: how close is our approximate answer to the correct an-
swer? One can also look at backward error: what is the smallest perturbation
to the problem such that our approximation is the true answer? Or there is
residual error: how much do we fail to satisfy the defining equations?

For each type of error, we have to decide whether we want to look at the
absolute error or the relative error. For vector quantities, we generally want
the normwise absolute or relative error, but often it’s critical to choose norms
wisely. The condition number for a problem is the relation between relative
errors in the input (e.g. the right hand side in a linear system of equations)
and relative errors in the output (e.g. the solution to a linear system of
equations). Typically, we analyze the effect of roundoff on numerical methods
by showing that the method in floating point is backward stable (i.e. the effect
of roundoffs lead to an error that is bounded by some polynomial in the
problem size times εmach) and separately trying to show that the problem is
well-conditioned (i.e. small backward error in the problem inputs translates
to small forward error in the problem outputs).

We are usually concerned with first-order error analysis, i.e. error analysis
based on a linearized approximation to the true problem.

3.7 Problems
1. Consider the mapping from quadratic polynomials to cubic polynomials

given by p(x) 7→ xp(x). With respect to the power basis {1, x, x2, x3},
what is the matrix associated with this mapping?

2. Consider the mapping from functions of the form f(x, y) = c1 + c2x+
c3y to values at (x1, y1), (x2, y2), and (x3, y3). What is the associated
matrix? How would you set up a system of equations to compute the
coefficient vector c associated with a vector b of function values at the
three points?

15



3. Consider the L2 inner product between quadratic polynomials on the
interval [−1, 1]:

〈p, q〉 =
∫ 1

−1

p(x)q(x) dx

If we write the polynomials in terms of the power basis {1, x, x2}, what
is the matrix associated with this inner product (i.e. the matrix A such
that cTpAcq = 〈p, q〉 where cp and cq are the coefficient vectors for the
two polynomials.

4. Consider the weighted max norm

‖x‖ = max
j
wj|xj|

where w1, . . . , wn are positive weights. For a square matrix A, what is
the operator norm associated with this vector norm?

5. If A is symmetric and positive definite, argue that the eigendecompo-
sition is the same as the singular value decomposition.

6. Consider the block matrix

M =

[
A B
BT D

]
where A and D are symmetric and positive definite. Show that if

λmin(A)λmin(D) ≥ ‖B‖22
then the matrix M is symmetric and positive definite.

7. Suppose D is a diagonal matrix such that AD = DA. If aij 6= 0 for
i 6= j, what can we say about D?

8. Convince yourself that the product of two upper triangular matrices is
itself upper triangular.

9. Suppose Q is a differentiable orthogonal matrix-valued function. Show
that δQ = QS where S is skew-symmetric, i.e. S = −ST .

10. Suppose Ax = b and (A + D)y = b where A is invertible and D is
relatively small. Assuming we have a fast way to solve systems with A,
give an algorithm to compute y to within an error of O(‖D‖2) in terms
of two linear systems involving A and a diagonal scaling operation.

16



11. Suppose r = b − Ax̂ is the residual associated with an approximate
solution x̂. The maximum componentwise relative residual is

max
i

|ri|/|bi|.

How can this be written in terms of a norm?

17



4 Linear systems
We start with

Ax = b

where A ∈ Rn×n is square and nonsingular. We initially consider direct
solvers that compute x in a finite number of steps using a factorization of A.

4.1 Sensitivity and conditioning of linear systems
We care about the sensitivity of linear systems for two reasons. First, we
compute using floating point, and the standard analysis of many numeri-
cal methods involves analyzing backward stability (a property purely of the
algorithm) together with conditioning (a property purely of the problem).
Second, many problems inherit error in the input data from measurements
or from other computations, and sensitivity analysis is needed to analyze
how sensitive a computation might be to these input errors.

In most of our error analysis, we assume that a standard norm (the 1-
norm, 2-norm, or max-norm) is a reasonable way to measure the sizes of
inputs and outputs. But if different elements of the input or output represent
values with different units, the problem might be ill-scaled. For this reason,
it usually makes sense to scale the system before doing any error analysis (or
solves).

Matrix multiplication Suppose A ∈ Rn×n is nonsingular, and consider
the computation

y = Ax.

Here we treat x as an input and y as an output. The condition number
relates relative perturbations to the input to relative perturbations to the
output. That is, given

ŷ = Ax̂,

we would like to compute a bound on ‖ŷ − y‖/‖y‖ in terms of ‖x̂− x‖/‖x‖.
For any consistent matrix norm,

‖x‖ = ‖A−1y‖ ≤ ‖A−1‖‖y‖
‖ŷ − y‖ = ‖A(x̂− x)‖ ≤ ‖A‖‖x̂− x‖

18



and therefore
‖ŷ − y‖
‖y‖

≤ κ(A)
‖x̂− x‖
‖x‖

, κ(A) ≡ ‖A‖‖A−1‖.

We call κ(A) the condition number with respect to multiplication.
Another perspective is to consider perturbations not to x, but to A:

ŷ = Âx, Â = A+ E

In this case, we have

‖ŷ − y‖ = ‖E(x̂− x)‖ ≤ ‖E‖‖x̂− x‖

and
‖ŷ − y‖
‖y‖

≤ κ(A)
‖E‖
‖A‖

,

where κ(A) = ‖A‖‖A−1‖ as before.

Linear systems Now suppose A ∈ Rn×n is nonsingular and consider the
linear solve

Ax = b.

If x̂ is an approximate solution, the corresponding residual is

r = b− Ax̂

or, put differently
x̂ = A−1(b+ r).

Using the sensitivity analysis for matrix multiplication, we have
‖x̂− x‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

.

We can also look at the sensitivity with respect to perturbations to A. Let
Â = A+ E. Using the Taylor expansion of the inverse about A, we have

Â−1 = A−1 − A−1EA−1 +O(‖E‖2).

Therefore if x̂ = Â−1b, we have

x̂− x = −A−1Ex+O(‖E‖2),

and by manipulating norm bounds,
‖x̂− x‖
‖x‖

≤ κ(A)
‖E‖
‖A‖

+O(‖E‖2).

19



Geometry of ill-conditioning In the case of the matrix two-norm, we
have

κ2(A) ≡
σmax(A)

σmin(A)
.

where σmax(A) = ‖A‖ and σmin(A) = 1/‖A−1‖ are the largest and smallest
singular values of A. The two-norm condition number can be interpreted
geometrically as the ratio between the longest and the smallest axes of the
elliptical region

{Ax : ‖x‖ ≤ 1}.

4.2 Gaussian elimination
We think of Gaussian elimination as an algorithm for factoring a nonsingular
matrix A as

PA = LU

where P is a permutation, L is unit lower triangular, and U is upper triangu-
lar. Given such a factorization, we can solve systems involving A by forward
and backward substitution involving L and U .

The simplest case for Gaussian elimination is a (block) 2-by-2 system in
which no pivoting is required:

A =

[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
.

Reading off the matrix products, we have

L11U11 = A11

L11U12 = A12

L21U11 = A21

L22U22 = A22 − L21U12 = A22 − A21A
−1
11 A12.

That is, we can compute the L and U by solving the smaller subproblem of
factoring A11, then computing the off-diagonal blocks via triangular solves,
and then factoring the Schur complement A22 − L21U12. Like matrix multi-
plication, we can think of Gaussian elimination in several different ways, and
choosing the submatrices differently provides different strategies for Gaussian
elimination.

20



We can also think of Gaussian elimination as applying a sequence of Gauss
transformations (or elementary transformations). This perspective is partic-
ularly useful when we think about analogous algorithms based on orthogonal
transformations (Givens rotations or Householder reflections) which lead to
methods for QR factorization. However we think about the method, dense
Gaussian elimination involves three nested loops (like matrix multiplication)
and takes O(n3) time. Once we have a factorization, solving linear systems
with it takes O(n2) time.

In general, of course, pivoting may be needed. The usual row pivoting
strategy guarantees that all the entries of L below the main diagonal are
less than one. Alternate pivoting strategies are possible, and are particularly
attractive in a sparse or parallel settings (where the data motion associated
with pivoting is annoyingly expensive).

Gaussian elimination is usually backward stable, i.e. the computed L and
U correspond to some Â which is close to A in the sense of normwise relative
error. It is possible to construct examples where the backward error grows
terribly, but these occur fairly rarely.

4.3 LU and Cholesky
If A is symmetric and positive definite, we may prefer Cholesky factorization
to Gaussian elimination. The Cholesky factorization is

A = RTR

where R is upper triangular (sometimes this is also written LLT where L is
lower triangular). The Cholesky factorization exists and is nonsingular iff A
is positive definite (if A is semidefinite, a singular Cholesky factor may exist).
Attempting to compute the Cholesky factorization is a standard method for
testing positive definiteness of a matrix.

As with Gaussian elimination, we can think of the factorization in blocky
form as [

A11 A12

AT
12 A22

]
=

[
RT

11 0
RT

12 RT
22

] [
R11 R12

0 R22

]
This again leads to an algorithm in which we factor theA11 block, use triangu-
lar solves to compute the off-diagonal block of the Cholesky factor, and then
form and factor a Schur complement matrix. For an SPD matrix, Chokesky
factorization is backward stable even without pivoting.

21



The Cholesky factorization must succeed because every Schur comple-
ment of a symmetric positive-definite matrix is again symmetric and positive-
definite. The strictly diagonally dominant matrices share a similar property,
and can also safely be factored (via LU) without pivoting.

4.4 Sparse solvers
If the matrix A is large and sparse, we might consider using a sparse direct
factorization method. Typically, sparse LU or Cholesky look like

PAQ = LU or QAQT = RTR

where the column permutation Q (or symmetric permutation, in the case of
Cholesky) is chosen to minimize fill, and the row permutation P is chosen
for stability. We say a nonzero element of L or U is a fill element if the
corresponding location in A is zero.

The Cholesky factorization of a sparse SPD matrix involves no fill if the
corresponding graph is a tree and if the ordering always places children before
parents (a bottom-up ordering). Matrices that look “almost” like trees can
be efficiently dealt with by sparse factorization methods. It turns out that
2D meshes are usually fine, 3D meshes get expensive fast, and most “small
world” graphs generate tremendous amounts of fill.

Band matrices are sparse matrices in which all the nonzero elements are
restricted to a narrow region around the diagonal. Band matrices are suffi-
ciently common and regular that they are handled by libraries like LAPACK
that are devoted to dense linear algebra algorithms. LAPACK does not deal
with more general sparse matrices.

4.5 Iterative refinement
Suppose Â = LU where Â is an “okay” approximation of A. Such a factor-
ization might be computed by ignoring pivoting, or by using lower-precision
arithmetic at an intermediate stage, or we might just have a case where
Gaussian elimination with partial pivoting is not quite backward stable. In
this case, we can “clean up” an approximate solution by iterative refinement:

x0 = U−1(L−1b)

xk+1 = xk + U−1(L−1(b− Axk))

22



The error ek = xk − x satisfies the iteration

ek+1 = (I − Â−1A)ek,

and iterative refinement converges quickly if ‖I − Â−1A‖ � 1.

4.6 Julia backslash
The Julia backslash operator A\b does different actions based on the type
of A (and of b). For triangular matrices, it applies forward or backward
substitution; for diagonal matrices, it applies elementwise scaling; for general
sparse or dense matrices it applies sparse and dense Gaussian elimination;
and for factorization objects, it uses the factorization to solve the linear
system. In general, it does “the right thing” given the information that you
provide via the type system. If you are solving a linear system, you should
always use backslash instead of inv.

One thing that Julia’s backslash does not do is to see whether you’ve
already solved a linear system involving the matrix in question. If you want
to re-use a factorization, you need to do so yourself. This typically looks
something like

1 F = lu(A) # O(n^3)
2 x = F\b # Solve Ax=b using the factoriation in O(n^2)
3 y = F\d # O(n^2) again
4 # ...

4.7 Problems
1. Suppose A is square and singular, and consider y = Ax. Show by

example that a finite relative error in the input x can lead to an infinite
relative error in the output y.

2. Give a 2× 2 example for which an O(εmach) normwise relative residual
corresponds to a normwise relative error near one.

3. Show that κ2(A) = 1 iff A is a scalar multiple of an orthogonal matrix.

4. Suppose M is the elementary transformation matrix

M =

[
1 0
m I

]
.

23



What is M−1?

5. Compute the Cholesky factorization of the matrix

A =

[
4 2
2 9

]
6. Consider the matrix [

D u
uT α

]
where D is diagonal with positive diagonal elements larger than the
corresponding entries of u. For what range of α must the matrix be
positive definite?

7. If A is symmetric and positive definite with Cholesky factor R, show
that κ2(A) = κ2(R)

2 (note: use the SVD).

8. If Â = LU = A+E, show that iterative refinement with the computed
LU factors satisfies

‖ek+1‖ ≤

(
κ(Â)

‖E‖
‖Â‖

)
‖ek‖

24



5 Least squares problems
Consider the equations

Ax = b

where A ∈ Rm×n and b ∈ Rn. We typically consider m > n. The system
of equations may be over-determined, i.e. b is not in the range of A. In this
case, we usually instead solve the least squares problem

minimize ‖Ax− b‖2

The system may also be ill-posed, i.e. the columns of A are linearly dependent
(or nearly linearly dependent). These conditions are not mutually exclusive.

When n and m are small and the matrix A is dense, we can solve either
linear systems or least squares problems using a few standard matrix factor-
izations: LU/Cholesky, QR, or SVD. When n and m are large and sparse, we
may be able to use a sparse direct solver (assuming the graph of the matrix
in question is “nice”). Otherwise, we may prefer an iterative solver.

5.1 Sensitivity and conditioning of least squares
Suppose A ∈ Rm×n with m > n has singular values σ1 > . . . > σn. The
condition number for least squares is κ(A) = σ1/σn. If x̂ is an approximate
solution to the least squares problem with residual r̂ = b− Âx, then

‖x̂− x‖
‖x‖

≤ κ(A)
‖r̂‖
‖b‖

.

This is extremely similar to one of the bounds we saw for linear systems. Of
course, r̂ will not necessarily be close to zero even if x̂ is close to x!

It’s possible to compute the sensitivity to perturbations to the matrix A
as well, but this is much messier than in the linear system case.

5.2 Normal equations
The normal equations for minimizing ‖Ax− b‖ are

ATAx = AT b.

25



These equations exactly correspond to finding a stationary point ∇φ(x) = 0
where

φ(x) =
1

2
‖Ax− b‖2.

The equations are called the normal equations because they can be written
as

AT r = 0, r = b− Ax,

i.e. the residual at the solution is orthogonal (normal) to everything in the
range space of A.

The matrix ATA is sometimes called the Gram matrix. It is symmetric
and positive definite (assuming that A has full column rank), but κ(ATA) =
κ(A)2. Hence, if the conditioning of A is a concern, we might not want to
solve the normal equations exactly.

5.3 QR
Given a matrix A ∈ Rm×n with m > n, the economy QR decomposition of A
is

A = QR, Q ∈ Rm×n, R ∈ Rn×n

where Q has orthonormal columns and R is upper triangular. In the full
QR decomposition, Q is square and R is a rectangular upper triangular
matrix. The QR decomposition can be computed via the Gram-Schmidt
process applied to the columns of A, though this is not backward stable and
is not the preferred approach most of the time. The QR decomposition can
be computed in a backward stable fashion via the Householder QR procedure,
which applies n simple orthogonal transformations (Householder reflections
of the form I−2uuT where ‖u‖ = 1) that “zero out” the subdiagonal elements
in each of the n columns in turn.

The QR decomposition is closely related to the normal equations system:
R is the Cholesky factor of ATA (to within a sign-rescaling of the diagonal
of R) and Q = AR−1 has orthonormal columns. But while computing R by
Cholesky factorization of ATA involves a sub-problem with condition number
κ(A)2, solving the system

RTx = QT b

involves just a solve with R, which has the same condition number as A.

26



Solving a least squares problem via QR is moderately more expensive than
solving the Cholesky problem. However, QR is somewhat more numerically
stable.

5.4 SVD
Just as we can solve the least squares problem with the economy QR decom-
position, we can also solve with the economy SVD A = UΣV T :

x = V Σ−1UT b.

If A ∈ Rm×n has the economy QR decomposition A = QR, we can compute
the economy SVD of A using the QR decomposition together with the SVD
of R. If m is sufficiently larger than n, then most of the work goes into the
QR step.

The SVD is even more numerically stable than QR decomposition, but
the primary reason for using the SVD is that we can analyze the behavior of
the singular values for reasoning about ill-posed problems.

5.5 Pseudo-inverses
The process of solving a least squares problem is a linear operation, which
we write as

x = A†b.

The symbol A† is the (Moore-Penrose) pseudoinverse, which we expand as

A† = (ATA)−1AT (Normal equations)
= R−TQ (QR)
= V Σ−1UT (SVD)

5.6 Ill-posed problems and regularization
An ill-posed least squares problem is one in which the matrixA is ill-conditioned.
This means that there is a large set of vectors x̂ that explain the data equally
well – that is A(x̂ − x) is around the same order of magnitude as the error
in the measurement vector b. Hence, the data is not good enough to tell
us which of the possible solution vectors is really appropriate, and the usual

27



least-squares approach overfits the data, and if the coefficients x are later
used to model behavior at a new data point, the prediction will be poor.

When the data does not provide enough information to fit a model, we
need to incorporate prior knowledge that is not based on the data. This leads
to regularized least squares. Some common approaches include

• Factor selection, i.e. predicting based on only a subset of the columns
of A:

x̃I = A†
:,Ib.

The relevant subset I may be determined using QR with column piv-
oting or using more sophisticated heuristics based on an SVD.

• Truncated SVD, i.e. computing

x̃ = V:,kΣ
−1
1:k,1:kU

T
:,kb.

This completely discards the influence of “poorly-behaved” directions.

• Tikhonov regularization, i.e. minimizing

φTik(x;λ) =
1

2
‖Ax− b‖2 + λ2

2
‖x‖2M

where M is some positive definite matrix and λ is a small regularization
parameter. The first term penalizes mismatch to the data; the second
term penalizes overly large coefficients.

Each of these approaches has a parameter that controls the balance between
fitting the data and enforcing the assumptions. For methods based on subset
selection or truncated SVD, one has to choose the number of retained direc-
tions k; for Tikhonov regularization, one has to choose the regularization
parameter λ. If something is known in advance about the error, these pa-
rameters can be chosen a priori. Usually, though, one chooses the parameter
in an adaptive way based on some criterion. Examples include the PRESS
statistic, corresponding to the sum of squared prediction errors in a leave-
one-out cross-validation process, or using the “L-curve” (topics we discussed
briefly toward the end of the semester).

28



5.7 Problems
1. Suppose M is symmetric and positive definite, so that ‖x‖M =

√
xTMx

is a norm. Write the normal equations for minimizing ‖Ax− b‖2M .

2. Suppose A ∈ Rn×1 is a vector of all ones. Show that A†b is the sample
mean of the entries of b.

3. Suppose A = QR is an economy QR decomposition. Why is κ(A) =
κ(R)?

4. Suppose we have economy QR decompositions for A1 ∈ Rm1×n and
A2 ∈ Rm2×n, i.e.

A1 = Q1R1, A2 = Q2R2

Show that we can compute the QR decomposition of A1 and A2 stacked
as [

A1

A2

]
= QR, Q =

[
Q1

Q2

]
Q̃

where
Q̃R =

[
R1

R2

]
is an economy QR decomposition.

5. Give an example of A ∈ R2×1 and b ∈ R2 such that a small relative
change to b results in a large relative change to the solution of the least
squares problem. What is the condition number of A?

6. Write the normal equations for a Tikhonov-regularized least squares
problem.

7. Show that Π = AA† is a projection (Π2 = Π) and that Πb is the closest
point to b in the range of A.

8. Using the normal equations approach, find the coefficients α and β that
minimize

φ(α, β) =

∫ 1

−1

(α + βx− f(x))2 dx

29



6 Eigenvalues
In this section, we discussed the eigenvalue problem

Ax = λx.

Depending on the context, one might want all eigenvalues of A or only some;
eigenvalues only, eigenvectors only, or both eigenvalues and eigenvectors; row
and column eigenvectors or only one or the other. Different methods give
different information.

6.1 Why eigenvalues?
There are several reasons why we might want to compute eigenvalues or
eigenvectors

• Eigenvalue decompositions are often used to reason about systems of
linear differential equations or difference equations. Eigenvalues give
information about how special solutions grow, decay, or oscillate; eigen-
vectors give the corresponding “mode shapes”.

• Eigenvalue problems involving tridiagonal matrices are common in the
theory of special functions, and play an important role in numerical
quadrature methods (for example).

• Eigenvalue problems play a special role in linear control theory, and
eigenvalue decompositions can be efficiently solve a variety of problems
that arise there. We gave one example (Sylvester equations) in lecture.

• Symmetric eigenvalue problems are among the few non-convex opti-
mization problems that we know how to reliably solve. Many other
optimization problems can be approximated by (relaxed to) eigenvalue
problems. This is the basis of spectral graph partitioning and spectral
clustering, for example.

• Eigenvalue finding and polynomial root finding are essentially equiva-
lent. For example, in the Polynomial.jl package, the roots command
finds the roots of a polynomial via an equivalent eigenvalue problem.

There is also information that can be derived by eigenvalues or by other
methods. Often an eigenvalue decomposition is useful for analysis, and an-
other approach is useful for computation.

30



6.2 Jordan to Schur
In an introductory class, you may have learned about the Jordan canonical
form. For almost all matrices, we have a basis of eigenvectors V and can
write

AV = V Λ.

In some cases in which we have eigenvalues with high multiplicity, we may
need generalized eigenvectors, and replace the eigenvalue matrix Λ with a
matrix that has eigenvalues on the diagonal and some ones on the first su-
perdiagonal. However, the Jordan form is discontinuous in the entries of the
matrix; an infinitesimally small perturbation can change one of the super-
diagonal elements from a zero to a one. Also, the eigenvector matrix V can in
general be rather poorly behaved (unless A is symmetric or has other special
structure).

Numerical analysts prefer the Schur form to the Jordan form. The (com-
plex) Schur form is

AU = UT

where U ∈ Cn×n is a unitary matrix and T ∈ Cn×n is upper triangular. The
real Schur form is

AQ = QT

where Q ∈ Rn×n is an orthogonal matrix and T ∈ Rn×n is a block upper
triangular matrix with 1 × 1 blocks (corresponding to real eigenvalues) and
2× 2 blocks (corresponding to complex conjugate pairs) on the diagonal. As
in the Jordan form, the diagonal elements of T in the complex Schur form are
the eigenvalues; but where the columns of V in the Jordan form correspond
to eigenvectors (or generalized eigenvectors), the columns of U or Q in the
Schur factor form bases for a sequence of nested invariant subspaces. That
is, for each 1 ≤ k ≤ n, we have

AU:,1:k = U1:k,:T1:k,1:k

in the complex Schur form; and similarly for the real Schur form we have

AQ:,1:k = Q1:k,:T1:k,1:k

for each 1 ≤ k ≤ n such that taking the first k columns does not split a 2×2
diagonal block.

31



If we insist, we can recover eigenvectors from the Schur form. Consider
the complex Schur form, and suppose we are interested in the eigenvector
associated with the eigenvalue tkk (which we will assume for simplicity has
multiplicity 1). Then solving the system(

T1:(k−1),1:(k−1) − tkkI
)
w + T1:(k−1),k = 0

gives us a vector
v = U:,(1:k−1)w + U:,k

with the property that

Av = AU:,(1:k)

[
w
1

]
= U:,(1:k)T

[
w
1

]
= U:,(1:k)tkk

[
w
1

]
= vtkk.

Hence, computing eigenvectors from the Schur form can be done at the cost
of one triangular solve per eigenvector.

We can go the other way as well: given a Jordan form, we can easily
compute the corresponding Schur form. Suppose that

AV = V Λ

and let V = UR be a complex QR decomposition of V . Then

AU = U(RΛR−1) = UT

is a complex Schur form for A.

6.3 Symmetric eigenvalue problems and SVDs
Broadly speaking, I tend to distinguish between two related perspectives
on eigenvalues. The first is the linear map perspective: A represents an
operator mapping a space to itself, and an eigenvector corresponds to an
invariant direction for the operator. The second perspective is the quadratic
form perspective: if A is a symmetric matrix representing a quadratic form
xTAx, then the eigenvalues and eigenvectors are the stationary values and
vectors for the Rayleigh quotient

ρA(x) =
xTAx

xTx
.

32



If we differentiate xTAx− ρAx
Tx = 0, we have

2δxT (Ax− ρAx)− δρa(x
Tx) = 0

which means that setting δρA = 0 implies

Ax− ρA(x)x = 0.

The largest eigenvalue is the maximum of the Rayleigh quotient, and the
smallest eigenvalue is the minimum of the Rayleigh quotient.

The singular value decomposition can be thought of as a symmetric eigen-
value problem in several different ways. The simplest approach is to consider
the stationary points of the function

φ(x) =
‖Ax‖2

‖x‖2
=
xTATAx

xTx
.

This is the (square) of the function that appears in the definition of the
operator 2-norm, and it is the Rayleigh quotient for the Gram matrix ATA.
We can also consider the functional

ψ(u, v) =
uTAv

‖u‖‖v‖
,

which we can show, with some calculus and algebra, has stationary points at
solutions to the matrix eigenvalue problem([

0 A
AT 0

]
− ψI

)[
u
v

]
= 0

whose eigenvalues are {±σi} where {σi} are the singular values of A,
The Rayleigh quotient is such a powerful tool that the symmetric eigen-

value problem behaves almost like a different problem from the nonsymmetric
eigenvalue problems. There are types of error analysis and algorithms that
work for the symmetric case and have no real useful analogue in the nonsym-
metric case.

6.4 Power method and related iterations
Power method The simplest iteration for computing eigenvalues is the
power method

x̃k+1 = Axk

xk+1 = x̃k+1/‖x̃k+1‖

33



The iterates actually satisfy

xk =
Akx0
‖Akx0‖

.

and if A = V ΛV −1 is an eigendecomposition, then

Ak = V ΛkV −1 = λk1(V D
kV −1)

where D = diag(1, λ2/λ1, . . . , λn/λ1). Assuming |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥
|λn|, we have

Akx0 ∝ v1 +O
(
|λ2|k/|λ1|k

)
,

assuming x0 has some component in the v1 direction when expressed in the
eigenbasis. Hence, the power iteration converges to the eigenvector associated
with the largest eigenvalue, and the rate is determined by the ratio of the
magnitudes of the largest two eigenvalues

Inverse iteration The problem with power iteration is that it only gives
us the eigenvector associated with the dominant eigenvalue, the one farthest
from the origin. What if we want the eigenvector associated with the eigen-
value nearest the origin? A natural strategy then is inverse iteration:

x̃k+1 = A−1xk

xk+1 = x̃k+1/‖x̃k+1‖

Inverse iteration is simply power iteration on the inverse matrix, which has
the eigendecomposition A−1 = V Λ−1V −1. Hence, inverse iteration converges
to the eigenvector associated with the eigenvalue nearest zero, and the rate
of convergence is determined by the ratio of magnitudes of that eigenvalue
and the second-furthest-away.

Shifts If we want to find an eigenvalue close to some given target value
(and not just zero), a natural strategy is shift-invert:

x̃k+1 = (A− σI)−1xk

xk+1 = x̃k+1/‖x̃k+1‖

The eigendecomposition of (A−σI)−1 is V (Λ−σI)−1V −1, and the eigenvalues
nearest σ correspond to the largest magnitudes for (λ− σ)−1

34



Rayleigh quotient iteration A static shift-invert strategy will converge
geometrically (unless the shift is an eigenvalue, in which case convergence is
instantaneous). We can accelerate convergence by using increasingly accu-
rate estimates for the eigenvalue as shifts. A natural way to estimate the
eigenvalue is using the Rayleigh quotient, which gives us the iteration

x̃k+1 = (A− ρA(xk)I)
−1xk

xk+1 = x̃k+1/‖x̃k+1‖

Rayleigh quotient iteration converges superlinearly to isolated eigenvalues
– quadratically in the nonsymmetric case, cubically in the symmetric case.
Unlike static shift-invert, though, the Rayleigh quotient iteration requires a
factorization of a new shifted system at each step.

Subspace iteration So far, we have talked only about iterations for single
vectors. Subspace iteration generalizes the power iteration idea to multiple
vectors. The subspace iteration looks like

Qk+1Rk+1 = AQk;

that is, at each step we multiply an orthonormal basis for a subspace by A,
then re-orthonormalize using a QR decomposition. Subspace decomposition
converges like O(|λm+1|k/|λm|k), where m is the dimension of the subspace
and the eigenvalues are ordered in descending order of magnitude. The dif-
ference between the iterates and the “true” subspace has to be measured in
terms of angles rather than vector differences.

The tricks for accelerating power iteration – shift-invert and adaptive
shifting – can be applied to subspace iteration as well as to single vector
iterations.

6.5 QR iteration
The QR iteration is the workhorse algorithm for solving nonsymmetric dense
eigenvalue problems. Named one of the top ten algorithms of the 20th cen-
tury, the modern QR iteration involves a beautiful combination of elementary
ideas put together in a clever way. You are not responsible for recalling the
details, but you should remember at least two ingredients: subspace iteration
and Hessenberg reduction.

35



Nesting in subspace iteration One of the remarkable properties of sub-
space iteration is that it nests: inside the subspace iteration for a sub-
space of dimension m sits subspace iteration for subspaces of dimension
m − 1,m − 2, . . . , 1. Hence if A has eigenvalues with distinct moduli, then
the iteration

Qk+1Rk+1 = AQk, Qk ∈ Rn×n

will produce Qk → Q where Q is the orthogonal Schur factor for A. Of
course, we again need to be careful to measure convergence by angles between
corresponding columns of Q and Qk rather than by the vectors themselves.
If the eigenvalues do not have distinct moduli, then Q will correspond to a
set of vectors that span nested invariant subspaces.

The first column of the Qk matrix follows an ordinary power iteration:

Qk+1Rk+1e1 = (Qk+1e1)rk+1,11 = A(Qke1),

and the last column of Qk+1 follows an inverse iteration with AT :

Rk+1Q
T
k = QT

k+1A =⇒ (Qken)
T ∝ (Qk+1e

T
n )A =⇒ (Qk+1en) ∝ A−T (Qken).

Hence, a step of shifted subspace iteration

Qk+1Rk+1 = (A− σI)Qk

effectively takes a step with a shift-invert transformation for the last vector.

QR iteration Subspace iteration puts the emphasis on the vectors. What
about the triangular factor T? If Qk ∈ Rn×n is an approximation for the
orthogonal Schur factor, an approximation for the triangular Schur factor is
A(k) given by

A(k) = QT
kAQk.

You may recognize this as a generalization of the Rayleigh quotient. The
subspace iteration recurrence is AQk = Qk+1Rk+1, so

A(k) = QT
kQk+1Rk+1 = Q̃k+1Rk+1, where Q̃k+1 ≡ QT

kQk+1.

Now, magic: we compute A(k+1) from the QR factorization A(k) = Q̃kRk:

A(k+1) = QT
k+1AQk+1 = Q̃T

k+1A
(k)Q̃k+1 = Rk+1Q̃k+1.

36



This leads to the simplest version of the QR iteration:

A(0) = A

Qk+1Rk+1 = A(k)

A(k+1) = Rk+1Qk+1

Shifts in QR The simple QR iteration only converges to the quasi-triangular
real Schur factor if all the eigenvalues have different magnitudes. Moreover,
as with subspace iteration, the rate of convergence is limited by how close
together the magnitudes of the different eigenvalues are. To get fast conver-
gence, we need to include shifts:

A(0) = A

Qk+1Rk+1 = A(k) − σkI

A(k+1) = Rk+1Qk+1 + σkI

Using the connection to subspace iteration, choosing σk = A
(k+1)
nn ends up

being equivalent to a step of Rayleigh quotient iteration.

Hessenberg reduction Incorporating shifts (and choosing the shifts in
a clever way) is one of two tricks needed to make QR iteration efficient.
The other trick is to convert A to upper Hessenberg form before running the
iteration, i.e. factoring

A = QHQT

where Q is orthogonal and H is zero below the first subdiagonal. QR fac-
torization of a Hessenberg matrix takes O(n2) time, and running one step of
QR factorization maps a Hessenberg matrix to a Hessenberg matrix.

6.6 Problems
1. The spectral radius of a matrix A is the maximum modulus of any of

its eigenvalues. Show that ρ(A) ≤ ‖A‖ for any operator norm.

2. Suppose A ∈ Rn×n is a symmetric matrix an V ∈ Rn×n is invert-
ible. Show that A is positive definite, negative definite, or indefinite iff
V TAV is positive definite, negative definite, or indefinite.

37



3. Write a Julia fragment to take numiter steps of shift-invert iteration
with a given shift. You should make sure that the cost per iteration is
O(n2), not O(n3).

4. Suppose T is a block upper-triangular matrix with diagonal blocks in
R1×1 or R2×2. Show that the eigenvalues of T are the diagonal values
in the 1 × 1 blocks together with the eigenvalue pairs from the 2 × 2
blocks.

5. If AU = UT is a complex Schur form, argue that A−1U = UT−1 is the
corresponding complex Schur form for A−1.

6. Suppose Qk is the kth step of a subspace iteration, and Q∗ is an or-
thonormal basis for the subspace to which the iteration is converging.
Let θ be the biggest angle between a vector in the range of Q∗ and
the best approximation by a vector in the range of Qk, and show that
cos(θ) is the smallest singular value of QT

kQ∗.

7. Show that the power method for the Cayley transform matrix (σI +
A)(σI − A)−1 for σ > 0 will first converge to an eigenvalue of A with
positive real part, assuming such an eigenvalue exists and the iteration
converges at all.

8. In control theory, one often wants to plot a transfer function

h(s) = cT (A− sI)−1b.

The transfer function can be computed in O(n2) time using a Hessen-
berg reduction on A. Describe how.

38



7 Stationary iterations
Stationary iterations for solving linear systems are rarely used in isolation
(except for particularly nicely structured problems). However, they are often
used as preconditioners for Krylov subspace methods.

7.1 The splitting picture
Let A =M −K be a splitting of the matrix A, and consider the iteration

Mxk+1 = Kxk + b.

The fixed point equation for this iteration is

Mx = Kx+ b,

which is equivalent to Ax = b. Using our usual trick of subtracting the fixed
point equation from the iteration equation to get an equation for the errors
ek = xk − x, we have

Mek+1 = Kek =⇒ ek+1 = Rek, R ≡M−1K.

The matrix R is sometimes called the iteration matrix. The iteration con-
verges iff the spectral radius ρ(R) is less than one; recall that the spectral
radius is the maximum of the eigenvalue magnitudes of R. A sufficient con-
dition for convergence is that some operator norm of R is less than one, and
this is often easier to establish than a bound on the spectral radius.

Ideally, a splitting should have two properties:

1. It should give a convergent method.

2. Applying M−1 should be easy.

Some standard choices of splitting are taking M to be the diagonal of A
(Jacobi iteration), taking M to be the upper or lower triangle of A (Gauss-
Seidel iteration), or taking M to be the identity (Richardson iteration).

39



7.2 The sweeping picture
For analysis, the splitting picture is the “right” way to think about stationary
iterations. In implementations, though, one often thinks not about splitting,
but about sweeping. For example, consider the model tridiagonal system
Tu = h2b where T is a tridiagonal matrix with 2 on the diagonal and −1 on
the first super- and subdiagonal. Written componentwise, this is

−ui−1 + 2ui − ui+1 = h2bi, for 1 ≤ i ≤ N

with u0 = uN+1 = 0. A sweep operation takes each equation in turn and
uses it to solve for one of the unknowns. For example, a Jacobi sweep looks
like

1 # Jacobi sweep in Julia (U is u_0 through u_{N+1}, u_0 = u_{N+1} = 0)
2 for i = 1:N
3 Unew[i+1] = ( h^2 * b[i] + U[i] + U[i+2] )/2
4 end
5 U[:] = Unew

while a Gauss-Seidel sweep looks like
1 # G-S sweep in Julia (U is u_0 through u_{N+1}, u_0 = u_{N+1} = 0)
2 for i = 1:N
3 U[i+1] = ( h^2 * b[i] + U[i] + U[i+2] )/2;
4 end

This formulation is equivalent to the splitting picture, but is arguably more
natural, at least in the context of PDE discretizations.

7.3 Convergence examples
We usually need some structural characteristic to guarantee convergence of
a stationary iteration. We gave two examples in class.

Jacobi and diagonal dominance Suppose A is strictly row diagonally
dominant, i.e.

|aii| >
∑
j 6=i

|aij|

Then Jacobi iteration converges for linear systems involving A. The proof is
simply that the iteration matrix R =M−1K by design has ‖R‖∞ < 1.

40



Gauss-Seidel and SPD problems Suppose A is symmetric and positive
definite. Then Gauss-Seidel iteration converges for linear systems involving
A. To prove this, note that each step in a Gauss-Seidel sweep is equivalent to
updating xi (holding all other entries fixed) to minimize the energy function

φ(x) =
1

2
xTAx− xT b.

If x∗ is the minimum energy point, then

φ(x)− φ(x∗) =
1

2
(x− x∗)TA(x− x∗) =

1

2
‖x− x∗‖2A.

If x(k) 6= x∗, then we can show that some step moving from x(k) to x(k+1)

must reduce the energy, i.e.

‖ek+1‖A < ‖ek‖A.

This is true regardless of the choice of x(k). Maximizing over all possible x(k)
gives us that ‖R‖A < 1.

7.4 Problems
1. Consider using Richardson iteration to solve the problem (I−K)x = b

where ‖K‖ < 1 (i.e. M = I). If x0 = 0, show that xk corresponds
to taking k terms in a truncated geometric series (a.k.a a Neumann
series) for (I −K)−1.

2. If A is strictly column diagonally dominant, Jacobi iteration still con-
verges. Why?

3. Show that if A is symmetric and positive definite and x∗ is a minimizer
for the energy

φ(x) =
1

2
xTAx− xT b

then
φ(x)− φ(x∗) =

1

2
(x− x∗)

TA(x− x∗).

4. The largest eigenvalue of the tridiagonal matrix T ∈ Rn×n is 2−O(n−2).
Argue that the iteration matrix for Jacobi iteration therefore has spec-
tral radius ρ(R) = 1−O(n−2), and therefore

log ρ(R) = −O(n−2)

41



Using this fact, argue that it takes O(n2) Jacobi iterations to reduce
the error by a constant factor for this problem.

42



8 Krylov subspace methods
The m-dimensional Krylov subspace generated by A and b is

Km(A, b) = span{b, Ab, . . . , Am−1b} = {p(A)b : p ∈ Pm−1}.

Krylov subspaces are phenomenally useful for two reasons:

1. All you need to explore a Krylov subspace is a subroutine that computes
matrix-vector products.

2. An appropriately chosen Krylov subspace often contains good approx-
imations to things we would like to compute (e.g. eigenvectors or so-
lutions to linear systems). Moreover, we can use the connection to
polynomials to reason about the quality of that space.

8.1 Arnoldi and Lanczos
While a Krylov subspace Km(A, b) may be an attractive space, the power
basis b, Ab, . . . , Am−1b is not an attractive basis for that space. Because the
power basis essentially corresponds to steps in a power iteration, successive
vectors get ever closer to the dominant eigenvector for the system. Hence,
the vectors become increasingly linearly dependent and the basis becomes
increasingly ill-conditioned. What we would really like is an orthonormal
basis for the nested Krylov subspaces. We can compute such a basis by the
Arnoldi process

q1 = b/‖b‖
vk+1 = Aqk

wk+1 = vk+1 −
k∑

j=0

qjhj,k+1, hj,k+1 = qTj vk+1

qk+1 = wk+1/hk+1,k, hk+1,k = ‖wk+1‖

That is, to get each new vector in turn we first multiply the previous vector
by A, then orthogonalize.

If we write Qk =
[
q1 . . . qk

]
, Arnoldi computes the decomposition

AQk = QkHk + qk+1hk+1,ke
T
k

43



where Hk is a k × k upper Hessenberg matrix consisting of the coefficients
that appear in the orthogonalization process. Note that Hk = QT

kAQk;
hence, if A is symmetric, then Hk is both upper Hessenerg and symmetric,
i.e. tridiagonal. In this case, we can compute the basis with a three-term
recurrence, orthogonalizing only against two previous vectors at each step.
The resulting algorithm is known as the Lanczos algorithm.

8.2 Krylov subspaces for linear systems
To solve a linear system with Krylov subspace we need two ingredients: a
Krylov subspace and a method of choosing an approximation from that space.
The two most common approaches are:

1. Choose the approximation x̂ that gives the smallest residual (in the two
norm). This is the basis of the GMRES algorithm, which is the default
solver for nonsymmetric matrices, as well as the MINRES algorithm
for symmetric indefinite problems.

2. If A is symmetric and positive definite, choose x̂ to minimize the energy
function φ(x) over all x in the space, where

φ(x) =
1

2
xTAx− xT b.

The equation Ax∗ = b is exactly the equation for a stationary point
(aka a critical point), and the only critical point of φ is the global min-
imum. The energy minimization strategy is the basis for the method of
conjugate gradients (CG), which is the default Krylov subspace solver
for SPD problems.

We did not actually derive CG in lecture; even more than with the QR itera-
tion, the magical-looking derivation of CG tends to obscure the fundamental
simplicity of the approach. We did briefly discuss the properties of the error
in CG, namely that the algorithm minimizes the energy norm of the error
‖x− x∗‖2A and the inverse energy norm of the residual, i.e. ‖Ax− b‖2A−1 .

8.3 Convergence behavior
Let’s consider the Krylov subspaces Km(A, b) and the problem of approximat-
ing x = A−1b by some x̂ ∈ Km(A, b). How good can the best approximation

44



from a given Krylov subspace be? Note that any element of Km(A, b) can be
associated with a polynomial of degree at most m− 1, i.e.

x̂ = p(A)b, p ∈ Pm−1.

The difference between x̂ and x is

x̂− x = (p(A)− A−1)b,

or, assuming A is diagonalizable,

x̂− x = V (p(Λ)− Λ−1)V −1b.

Taking norms, we have

‖x̂− x‖ ≤ κ(V ) max
λ

|p(λ)− λ−1| ‖b‖.

That is, apart from the annoying issue of the conditioning of the eigenvectors,
we can reduce the problem of bounding the error of the best approximation
to the problem of finding a polynomial p(z) that best approximates z−1 on
the set of eigenvalues.

For the SPD case, one can bound the best-estimate behavior using a
polynomial approximation to z−1 on an interval [λmin, λmax]. The argument
involves a pretty use of Chebyshev polynomials – see, for example, the theo-
rem on p. 187 of the textbook – but this bound is often quite pessimistic in
practice. The actual convergence depends on how clustered the eigenvalues
are, and also on the nature of the right hand side vector b.

8.4 Preconditioning
Krylov subspace methods are typically preconditioned; that is, rather than
solving

Ax = b

one solves (at least notionally)

M−1Ax =M−1b

where applying M−1 (the preconditioner solve) is assumed to be relatively in-
expensive. Typical choices for the preconditioner include the M matrix from

45



a stationary iteration, solves with approximate factorizations, and methods
that take advantage of the physical meaning of A (e.g. multigrid methods).
A good preconditioner tends to cluster the eigenvalues of M−1A. For CG,
both the preconditioner and the matrix A must be SPD. Choosing a good
preconditioner tends to be as much an art as a science, with the best precon-
ditioners often depending on an understanding of the particular application
at hand.

8.5 Krylov subspaces for eigenvalue problems
If AQk = QkHk + hk,k+1qk+1 is an Arnoldi decomposition, the eigenvalues of
Hk are often used to estimate eigenvalues of A. The columns of Qk span a
Krylov subspace that may be generated using A or using some transformed
matrix (e.g. (A−σI)−1 where σ is some shift of interest). Hence, the Krylov
subspace of A contains k steps of a power iteration, possibly with a shift-
invert transformation, and should have at least the approximating power of
that iteration. Note that if Hkv = vλ, then x̂ = Qkv is an approximate
eigenvector with

Ax̂ = x̂λ+ hk,k+1qk+1e
T
k v,

i.e.
‖Ax̂− x̂λ‖ ≤ |hk,k+1||vk|.

The Julia command eigs computes a few of the largest eigenvalues, small-
est eigenvalues, or eigenvalues near some shift via Arnoldi (or Lanczos in the
case of symmetric problems).

8.6 Problems
1. Suppose A is symmetric positive definite and φ(x) = xTAx/2 − xT b.

Show that over all approximations of the form x̂ = Uz, the one that
minimizes φ satisfies (UTAU)z = UT b.

2. Suppose A is SPD and φ is defined as in the previous question. If
x̂ = Uz minimizes the energy of φ(x̂), show that ‖Uz − x̂‖2A is also
minimal.

3. Suppose A is nonsingular and has k distinct eigenvalues. Argue that
Kk(A, b) contains A−1b.

46



4. Argue that the residual after k steps of GMRES with a Jacobi precon-
ditioner is no larger than the residual after k steps of Jacobi iteration.

5. If A is symmetric, the largest eigenvalue is the maximum value of the
Rayleigh quotient ρA(x). Show that computing the largest eigenvalue
of ρT (z) where T = QTAQ is equivalent to maximizing ρA(x) over x
s.t. x = Qz. The largest eigenvalue of T is always less than or equal
to the largest eigenvalue of A; why?

47



9 Iterations in 1D
We started the class with a discussion of equation solving in one variable.
The goal was to get you accustomed to thinking about certain ideas (fixed
point iteration, Newton iteration) in a less complicated setting before moving
on to the more general setting of systems of equations.

9.1 Fixed point iteration and convergence
Fixed point iteration A fixed point of a function g : R → R is a solution
to the equation

x = g(x).

A one-dimensional fixed point iteration is an iteration of the form

xk+1 = g(xk).

Convergence analysis Our standard recipe for analyzing the convergence
of a fixed point iteration is

1. Subtract the fixed point equation from the iteration equation to get an
iteration for the error.

2. Linearize the error iteration to obtain a tractable problem that de-
scribes the behavior of the error for starting points “close enough” to
the initial point.

More concretely, if we write the error at step k as ek = xk − x∗, then sub-
tracting the fixed point equation from the iteration equation gives

ek+1 = g(x∗ + ek)− g(x∗).

Assuming g is differentiable, we have

ek+1 = g′(x∗)ek +O(|ek|2).

If |g′(x∗)| < 1, then the fixed point is attractive: that is, the iteration will
converge to x∗ for starting points close enough to x∗.

48



Plotting convergence When g is differentiable and 0 < |g′(x∗)| < 1, fixed
point iteration is linearly convergent. That is, we have

|ek| ≈ |e0||g′(x∗)|k,

and so when we plot the error on a semi-logarithmic scale, we see

log |ek| ≈ k log |g′(x∗)|+ log |e0|,

i.e. the (log scale) errors fall approximately on a straight line. Of course,
this convergence behavior only holds until rounding error starts to dominate!
When g′(x) = 0, we have superlinear convergence.

9.2 Newton’s method
Newton’s method Newton’s method for solving f(x) = 0 is:

xk+1 = xk − f ′(xk)
−1f(xk).

We derive the method by taking the linear approximation

f(xk + p) ≈ f(xk) + f ′(xk)p

and choosing the update p such that the approximation is zero; that is, we
solve the linear equation

f(xk) + f ′(xk)(xk+1 − xk) = 0.

Local convergence Assuming f is twice differentiable, the true solution
x∗ satisfies

f(xk) + f ′(xk)(x∗ − xk) = O(|xk − x∗|2)
Writing ek = xk − x∗ and subtracting the true solution equation from the
iteration equation gives us

f ′(xk)ek+1 = O(|ek|2).

If f ′(xk) is bounded away from zero, we then have that |ek+1| = O(|ek|2), or
quadratic convergence. Plotting quadratic convergence on a semi-logarithmic
plot gives us a shape that looks like a downward-facing parabola, up to the
point where roundoff errors begin to dominate (which often only takes a few
steps).

49



Initial guesses Newton’s iteration is locally convergent – it is only guar-
anteed to converge from starting points that are sufficiently close to the
solution. Hence, a good initial guess can be critically important. Getting a
good initial guess frequently involves reasoning about the problem in some
application-specific way, approximating the original equations in a way that
yields something analytically tractable.

Secant iteration One of the annoying features of Newton’s iteration is
that it requires that we compute derivatives. Of course, we can always replace
the derivatives by a finite difference approximation:

f ′(xk) ≈
f(xk)− f(xk−1)

xk − xk−1

.

This leads to the secant iteration

xk+1 = xk −
f(xk)(xk − xk−1)

f(xk)− f(xk−1)

The convergence analysis for secant iteration is slightly more complicated
than that for Newton iteration, but the iteration is certainly superlinear.

9.3 Bisection
Newton’s iteration – and most other fixed point iterations – generally only
converge if the initial guess is good enough. An alternate approach of bisec-
tion converges slowly but consistently to a solution of f(x) = 0 in an interval
[a, b] assuming that f(a)f(b) < 0 and f is continuous on [a, b]. Bisection
relies on the idea that if f changes sign between the endpoints of an interval,
then there must be a zero somewhere in the interval. If there is a sign change
between f(a) and f(b) and c = (a+ b)/2, then there are three possibilities:

• f(c) = 0 (in which case we’re done).

• f(c) has the same sign as f(a), in which case [c, b] contains a zero of f .

• f(c) has the same sign as f(b), in which case [a, c] contains a zero of f .

Thus, we have an interval half the size of [a, b] that again contains a solution
to the problem.

50



Bisection produces a sequence of ever-smaller intervals, each guaranteed
to contain a solution. If we know there is a solution in the interval [a, b],
we usually take x = (a + b)/2 as the approximation; barring any additional
information about the solution, this is the approximation in the interval that
minimizes the worst-case error. Hence, if [a, b] is the initial interval and x0 =
(a+b)/2 is the initial guess, then the initial error bound is |x0−x∗| ≤ |b−a|/2.
For successive iterations, the error bound is |xk − x∗| ≤ |b− a|/2k+1.

9.4 Combined strategies
Newton and secant iterations are fast but dangerous. Bisection is slow but
steady. We would like the best of both worlds2: superlinear convergence
close to the solution, with steady progress even far from the solution. Brent’s
algorithm is one example that does this. Of course, Brent’s algorithm still
requires an initial bracketing interval, but it is otherwise about as bulletproof
as these things can possibly be.

9.5 Sensitivity analysis
Suppose x̂ is an approximation of x∗ such that f(x∗) = 0, where f is at least
continuously differentiable. How can we evaluate the quality of the estimate?
The simplest thing is to check the residual error |f(x̂)|. In some cases, this is
enough – we really care about making |f | small, and any point that satisfies
this goal will suffice. In other cases, though, we care about the forward error
|x̂− x∗|. Of course, if we have an estimate of the derivative f ′(x∗), then we
can use a Taylor expansion to estimate

|x̂− x∗| ≈ |f(x̂)|/|f ′(x∗)| ≈ |f(x̂)|/|f ′(x̂)|.

You should recognize this as saying that the Newton correction starting from
x̂ is a good estimate of the error. Of course, if we are able to compute both
f(x̂) and f ′(x̂) accurately, it may make sense to compute a Newton update
directly! One of the standard termination criteria for Newton iteration in-
volves using the size of the last correction as a (very conservative) estimate
of the error at the current step.

There are two caveats here. First, there is often some rounding error in
our computation of f , and we may need to take this into account. Assuming

2Does this sound like a blurb for a bad romance novel?

51



1 2 3 4 5 6 7 8 9 10

10−10

10−5

100

Figure 1: Convergence of Newton iteration, a fixed point iteration, and bi-
section for cos(x) = 0.

we can compute |f ′(x̂)| reasonably accurately, and |f̂(x̂) − f(x̂)| < δ where
f̂ is the value of f(x̂) computed with roundoff, then we have

|x̂− x∗| . (|f̂(x̂)|+ δ)/|f ′(x̂)|.

Thus, δ/|f ′((̂x)| estimates the best error we could reasonably expect.
The second caveat is that sometimes f ′(x∗) = 0, or is incredibly close to

zero. In this case, we can still pursue the same type of analysis, but we need
to take additional terms in the Taylor expansion. Or, if we know in advance
that f ′(x∗) = 0, we may choose to find a root of f ′ rather than finding a root
of f .

9.6 Problems
1. Consider the fixed point iteration xk+1 = g(xk) and assume x∗ is an

attractive point. Also assume |g′′(x)| < M everywhere. We know that
the iteration converges to x∗ from “close enough” starting points; show
that a sufficient condition for convergence is

|x0 − x∗| <
2(1− g′(x∗))

M
.

2. What is Newton’s iteration for finding
√
a?

3. Consider the fixed-point iteration xk+1 = xk + cos(xk). Show that for
x0 near enough to x∗ = π/2, the iteration converges, and describe the
convergence behavior.

52



4. The graphs shown in Figure 1 show the convergence of Newton’s it-
eration starting from x0 = 1, the fixed point iteration xk+1 = xk +
cos(xk)/xk starting from x0 = 1 and bisection starting from [0, 2] to
the solution of cos(x) = 0. Which plot corresponds to which method?
How can you tell?

5. Find an example of a function with a unique zero and a starting value
such that Newton’s iteration does not converge.

6. Suppose f has a sign change for between a = 1000 and b = 1001. How
many steps of bisection are required to obtain a relative error of 10−6?

53



10 Multivariate nonlinear problems
In the last part of the class, we moved from problems in numerical linear
algebra (simple for one reason) and nonlinear equations in one variable (sim-
ple for another reason) to problems involving nonlinear equation solving and
optimization with many variables. The picture is similar to the one we saw
in 1D, but more complicated both due to the fact that we’re now dealing
with several dimension and due to the fact that our safe fallback method in
1D (bisection) does not generalize nicely to higher-dimensional problems.

10.1 Nonlinear equations and optimization
We are interested in two basic problems:

1. Given F : Rn → Rn a twice-differentiable function, solve F (x∗) = 0.

2. Find a local minimum of φ : Rn → R a differentiable function with
three derivatives.

The two problems are not so far apart: finding a zero of F is equivalent to
minimizing ‖F‖2, while a local minimum of φ occurs at a stationary point,
i.e. x∗ satisfying the nonlinear equation ∇φ(x∗) = 0. The optimization per-
spective is particularly useful for analyzing “globalized” iterations (trust re-
gion methods and line search methods).

10.2 Fixed point iterations
As in one space dimension, our basic tool is a fixed point iteration:

xk+1 = G(xk)

converging to a stationary point

x∗ = G(x∗).

Letting ek = xk − x∗, we have

ek+1 = G′(x∗)ek +O(‖ek‖2),

and so we have convergence for small enough e0 when ρ(G′(x∗)) < 1. If
G′(x∗) = 0, we have superlinear convergence.

54



10.3 Newton’s method for systems
Newton’s method for solving nonlinear systems is x(k+1) = x(k) + p(k) where

F (x(k)) + F ′(x(k))p(k) = 0.

Put differently,
x(k+1) = x(k) − F ′(x(k))−1F (x(k)).

The iteration is quadratically convergent if F ′(x∗) is nonsingular.
As an example, consider the problem of finding the intersection between

the unit circle and the unit hyperbola, i.e., finding a zero of

F (x, y) =

[
x2 + y2 − 1
xy − 1

]
.

The Jacobian of F is

F ′ =

[
∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

]
=

[
2x 2y
y x

]
Note that the Jacobian is singular when x = y; that is, not only is the Newton
iteration only locally convergent, but the Newton step may be impossible to
solve at some points.

10.4 Newton’s method for optimization
For optimization problems, Newton’s method involves finding a stationary
point, i.e. a point at which the gradient ∇φ is zero. However, a stationary
point could also be a local maximum or a saddle point, so for optimization
we typically only use Newton steps if we can guarantee that they will de-
crease the objective function. Otherwise we modify the Newton iteration to
guarantee that we choose a descent direction for our step.

The Jacobian of the gradient is the matrix of second derivatives Hφ,
also known as the Hessian matrix. At a local minimum, the Hessian must
at least be positive semidefinite; at and near a strong local minimum, the
Hessian must be positive definite. A pure Newton step for optimization is

pk = −Hφ(xk)
−1∇φ(xk)

55



We can think of this as running Newton on the gradient system or as finding
a stationary point of the local quadratic approximation

φ(xk + p) ≈ φ(xk) +∇φ(xk)Tp+
1

2
pTHφ(xk)

−1p.

We would like to guarantee that steps move “downhill”, i.e. that pk is a
descent direction:

∇φ(xk)Tpk < 0.

WhenHφ(xk) is positive definite, so isHφ(xk)
−1, and so in this case ∇φ(xk)Tpk =

−∇φ(xk)TpkHφ(xk)
−1∇φ(xk) < 0 and we do have a descent direction. When

Hφ is indefinite, we typically modify our step to guarantee a descent direc-
tion. That is, we consider an iteration with steps

pk = −H−1
k ∇φ(xk)

where Hk is a positive definite scaling matrix, chosen to be the Hessian
when that is positive definite and something close to the Hessian (e.g. Hk =
Hφ(xk) + ηI, or something based on a modified factorization of Hφ(xk)).

10.5 Gauss-Newton and nonlinear least squares
The nonlinear least squares problem is to minimize

φ(x) =
1

2
‖F (x)‖2 = 1

2
F (x)TF (x), F : Rn → Rm.

The gradient of φ is

∇φ(x) = J(x)TF (x), J(x) = F ′(x),

and the Hessian of φ is the matrix with entries

Hφ,ij = (JTJ)ij +
∑
k

∂2Fj

∂xi∂xk
Fk(x).

The latter term is often a pain to compute, and when the least squares
problem can be solved so that F has a small residual (i.e. F (x∗) ≈ 0), we
might want to discard it. This leads us to the Gauss-Newton iteration

xk+1 = xk + pk, pk = −(JTJ)−1(JTF ) = −J†F.

56



Alternately, we can think of the Gauss-Newton iteration as minimizing the
linearized residual approximation

F (xk + p) ≈ F (xk) + J(xk)p.

When n = m and the Jacobian is nonsingular, Gauss-Newton iteration is
the same as Newton iteration on the equation F (x) = 0. Otherwise, Gauss-
Newton is not the same as Newton iteration for the least squares optimization
problem, and it does not converge quadratically unless the solution satisfies
F (x∗) = 0. On the other hand, the linear convergence is often more than
adequate (and it can be accelerated if needed).

10.6 Problems with Newton
There are a few drawbacks to pure Newton (and Gauss-Newton) iterations.

• The iterations are only locally convergent. We therefore want either
good initial guesses (application specific) or approaches that globalize
the iterations, expanding the region in which they converge. Often, we
need to use both strategies.

• Newton iteration involves computing first and second derivatives. This
is fine for simple functions of modest size, and in principle automated
differentiation tools can compute the relevant derivatives for us if we
have access to the source code for a program that computes the func-
tion. On the other hand, we don’t always have that luxury – someone
may hand us a “black box” function for which we lack source code, for
example – and so sometimes it is difficult to get the relevant deriva-
tives. Even if computing the derivatives is not difficult, it may be
unappealingly expensive.

• Even when we can get all the relevant derivatives, Newton iteration
requires factoring a new matrix (Jacobian or Hessian) at every step.
The linear algebra costs may again be expensive.

For all these reasons, Newton iteration is not the ending point of linear
solvers, but a starting point.

57



10.7 Approximating Newton
There are two main approaches to approximating Newton steps. First, one
can use an inexact Newton approach, solving the Newton linear systems
approximately. For example, in Newton-Krylov methods, we would apply
a (preconditioned) Krylov subspace solver to the linear systems, and we
might choose to terminate the solver while the residual for the linear system
was not completely zero. That is, there is a tradeoff between how many
linear iteration steps we take and how many nonlinear iteration steps we
take. We did some analysis on a homework problem to show that for an
optimization problem in which we solve the linear system with residual r, if
κ(H)‖r‖ < ‖∇φ‖ then we are at least guaranteed a descent direction.

Inside a Newton-Krylov solver, one repeatedly computes matrix vector
products with the Jacobian matrix J . It is not always necessary to compute
the Jacobian explicitly to form these matrix-vector products. Indeed, it may
not even be necessary to compute the Jacobian analytically; note that

Jv = F ′(x)v =
∂F

∂v
(x) = h−1(F (x+ hv)− F (x)) +O(h).

Of course, this still leaves the question of how to choose the finite difference
step size h!

The second family of methods are quasi Newton methods, in which we
use an approximation of the Jacobian or Hessian. The most popular quasi-
Newton approach is the BFGS algorithm (and the L-BFGS variant), which
builds up a Hessian approximation by updating an initial approximation with
information obtained by looking at successive iterates. We mentioned these
methods briefly in lecture, and the book mentions them as well, but did not
go into detail.

10.8 Other first-order methods
In addition to inexact Newton methods and quasi-Newton methods, there are
a plethora of first-order methods that don’t look particularly Newton like, at
least at first glance. For optimization, for example, classic steepest descent
methods are usually introduced before Newton methods (though steepest de-
scent is often very slow). There are also methods related to classical station-
ary iterations for linear systems. For example, the cyclic coordinate descent
method for optimization considers each variable in turn and adjusts it to

58



reduce the objective function value. When applied to a quadratic objective
function, cyclic coordinate descent becomes Gauss-Seidel iteration.

10.9 Globalization: line search
So far, we have only discussed how to choose an update p that “looks promis-
ing” (i.e. is a descent direction for an optimization problem). This may
involve an expensive subcomputation as in Newton’s method, or a simple-
minded choice like p = ±ej as in cyclic coordinate descent. But just because
an update pk looks promising based on a simplified linear or quadratic model
of the objective function does not mean that xk+1 = xk + pk will actually be
better than xk; indeed, the objective function at xk+1 (or the norm of the
residual in the case of equation solving) may be worse than it was at xk.

A line search strategy uses the update

xk+1 = xk + αkpk

for some 0 < αk < 1 chosen to guarantee a reduction in the objective function
value. A typical strategy is to start by trying αk = 1, then cut αk in half if the
step does not look “good enough” according to some criterion. A common
criterion is the Armijo condition, which says that we need to make at least
some fixed fraction of the progress predicted by the linear model; that is, we
require

φ(xk+1)− φ(xk) < ηαk∇φ(xk)Tp
for some constant η < 1. A simpler criterion (and one that can cause non-
convergence, at least in principle) is to simply insist

φ(xk+1) < φ(xk).

With an appropriate line search strategy and a condition on the search
direction, we can obtain optimization strategies that always converge to a
local minimum, unless the objective function is asymptotically flat or de-
creasing in some direction so that the iteration can “escape to infinity.” The
appropriate Wolfe conditions are spelled out in detail in optimization classes,
but we pass over them here.

10.10 Globalization: trust regions
In line search, we first pick a direction and then decide how far to go in that
direction to guarantee progress. But if we proposed a Newton step and line

59



search told us we couldn’t take it, that means that the step fell outside the
range where we could really trust the quadratic approximation on which the
step was based. The idea of trust region methods is to try to choose a step
that minimizes the function within some region in which we trust the model.
If we fail to make adequate progress, we reduce the size of our trust region;
if the model proves highly accurate, we might expand the trust region.

The trust region subproblem is to minimize a quadratic approximation

ψ(xk + p) = φ(xk) +∇φ(xk)Tp+
1

2
pTHp

subject to the constraint that ‖p‖ ≤ ρ for some given ρ. At the solution to
this problem, we satisfy the critical point equation

(H + λI)p = −∇φ(x)

for some λ ≥ 0. If the ordinary Newton step falls inside the trust region,
then λ = 0 and the constraint is said to be inactive. Otherwise, we choose
λ so that ‖p‖ = ρ2. Alternately, we may focus on λ, leaving the trust region
radius ρ implicit.

Applied to the Gauss-Newton iteration, the trust region approach yields
subproblems of the form

(JTJ + λI)p = −JTF.

You may recognize this as equivalent to solving the least-squares problem
for the Gauss-Newton update with Tikhonov regularization. This Levenberg-
Marquardt update strategy actually pre-dates the development of the trust
region framework.

Because it potentially involves searching for an appropriate λ, the trust
region subproblem is more expensive than an ordinary Newton subproblem,
which may already be rather expensive. Because of this, the trust region
subproblem is usually only solved approximately (using the colorfully-named
dogleg strategy, for example).

While trust region methods are somewhat more complicated to implement
than line search methods, they frequently are able to solve problems with
fewer function evaluations.

10.11 Globalization: continuation methods
Even with globalization, Newton and Newton-like iterations will not neces-
sarily converge quickly without a good initial guess. Moreover, if there are

60



multiple solutions to a problem, Newton may converge to the “wrong” (in the
light of the application) solution without a good initial guess. Most of the
time, finding a good initial guess is a matter of manipulating application-
specific approximations. There is, however, one general-purpose strategy
that often works: continuation.

The idea of continuation methods is to study not one function, but a
parametric family. The parameter may be a physically meaningful quantity
(e.g. magnitude of a force, displacement, voltage, etc); or it may be a purely
artificial construct. By gradually changing the parameter, one can move from
an easy problem instance to a hard problem instance in a controlled way.
Continuation methods follow a predictor-corrector pattern: given a solution
at parameter value sk, one first predicts the solution at parameter value sk+1

and then corrects the prediction using some locally-convergent iteration. For
example, the predictor might be the trivial predictor (i.e. use as an initial
guess at sk+1 the converged solution at sk) and a Newton corrector. If the
iteration diverges, one can always try again with a shorter step size.

The other advantage provided by continuation methods is that we are
not forced to use just one parameter. We can choose between parameters, or
even make up a new parameterization (this is the basis for pseudo-arclength
strategies, which I mentioned in a throw-away sentence one lecture). Often
problems that seem difficult when using one parameter are trivial with respect
to a different parameter.

10.12 Problems
1. Write a Julia code to estimate α and x such that y = αx is tangent to
y = cos(x) near x0 = nπ for n > 0. I recommend writing two equations
(matching function values and matching derivatives) in two unknowns
(the intersection x and α) and applying Newton. What is a good initial
guess?

2. Write a Julia code to find a critical point of φ(x, y) = − exp(x2 +
y2)(x2 + y2 − 2(ax+ by) + c) using Newton’s iteration.

3. Write a Julia fragment to minimize
∑

j exp(r
2
j )− 1 where r = Ax− b.

Use a Gauss-Newton strategy (no need to bother with safeguards like
line search).

61



4. Consider the fixed point iteration

xk+1 = xk − A−1F (xk)

where F has two continuous derivatives and A is some (possibly crude)
approximation to the Jacobian of F at the solution x∗. Under what
conditions does the iteration converge?

5. Suppose x∗ is a strong local minimum for φ, i.e. ∇φ(x∗) = 0 andHφ(x∗)
is positive definite. For starting points x0 close enough to x∗, Newton
with line search based on the Armijo condition behaves identically to
an unguarded Newton iteration with no line search. Why?

6. Argue that for large enough λ, p = −(Hφ(x) + λI)−1∇φ(x) is guaran-
teed to be a descent direction, assuming x is not a stationary point.

7. Suppose F : Rn×R 7→ Rn (i.e. F = F (x, s)). If we solve F (x(s), s) = 0
for a given s using Newton’s iteration and we are able to compute
∂F/∂s in at most O(n2) time, we can compute dx/ds in O(n2) time.
How?

8. Describe a fast algorithm to solve

Ax = b(xn)

where A ∈ Rn×n is a fixed matrix and b : R → Rn is twice differentiable.
Your algorithm should cost O(n2) per step and converge quadratically.

62



11 Constrained problems
Most of our discussion of optimization involved unconstrained optimization,
but we did spend two lectures talking about the constrained case (and the
overview section in the book is pretty reasonable). The constrained problem
is

minimize φ(x) s.t. x ∈ Ω

where Ω ⊂ Rn is usually defined in terms of a collection of equations and
inequalities

Ω = {x ∈ Rn : g(x) = 0 and h(x) ≤ 0}.

We discussed three basic approaches to constraints: elimination, barriers and
penalties, and Lagrange multipliers. Each can be used for both theory and
as the basis for algorithms.

11.1 Constraint elimination
The idea behind constraint elimination is that a set of equality constraints
g(x) = 0 implicitly define a lower-dimensional surface in Rn, and we can
write the surface as a parametric function x = F (y) for y ∈ Rp for p < n.
Then the constrained problem in x is an unconstrained problem in y:

minimize φ(x) s.t. g(x) = 0 ≡ minimize φ(F (y)).

The chief difficulty with constraint elimination is that we have to find a
parameterization of the solutions to the constraint equations. This is hard
in general, but is straightforward when the constraints are linear: g(x) =
ATx− b. In that case we can use a full (not economy) QR decomposition of
A to parameterize all feasible x as

x = F (y) = Q1R
−T
1 b+Q2y.

In terms of the linear algebra, linear constraint elimination has some attrac-
tive features: if φ is convex, then so is φ ◦ F ; and the Hessians of φ ◦ F are
better conditioned than those of φ. On the other hand, even linear constraint
elimination will generally destroy sparsity of the problem.

Constraint elimination is also an attractive option for some classes of
problems involving linear inequality constraints, particularly if those con-
straints are simple (e.g. elementwise non-negativity of the solution vector).

63



One can either solve the inequality-constrained problem by an iteration
that incrementally improves estimates of the active set and solves equality-
constrained subproblems. Alternately, one might use a parameterization that
removes the need for the inequality constraint; for example, we can param-
eterize {x ∈ R : x ≥ 0} as x = y2 where y is unconstrained. However, while
this is simple to think about, it may not be the best approach numerically.
For example, an objective that is convex in x may no longer by convex in y.

Ideally, you should understand constraint elimination well enough to im-
plement it for linear constraints and simple objectives (e.g. quadratic objec-
tives and linear least squares).

11.2 Penalties and barriers
The idea behind penalties and barriers is that we add a term to the objective
function to (approximately) enforce the constraint. For penalty methods, we
add a term that is positive if the constraint is violated, and grows quickly as
the level of violation becomes worse. For barrier methods, we add a term that
is positive near the boundary and blows up to infinity at (and outside) the
boundary. Often the penalty or barrier depends on some penalty parameter
µ, and the exact solution is recovered in the limit as µ → 0. A common
example is to enforce an equality constraint by a quadratic penalty:

x(µ) = argmin φ(x) +
1

2µ
g(x)2.

As µ → 0, x(µ) converges to x∗, a constrained minimizer of φ subject to
g(x) = 0.

Unfortunately the conditioning of the Hessian scales like O(µ−1), so the
problems become increasingly numerically sensitive with larger µ. One way
of dealing with this sensitivity is to get increasingly better initial guesses by
tracing x(µ) through a sequence of ever smaller µ values. One can do the
same thing for inequality constraints; this idea, together with a logarithmic
barrier, is the main tool in interior point methods.

In the case of exact penalties, the exact solution may be recovered for
nonzero µ; but exact penalty methods often result in a non-differentiable
objective.

Ideally, you should understand the basic idea behind penalties at the level
where you could implement a simple penalty method (or barrier method).
You should also understand enough about sensitivity and conditioning of

64



linear systems to understand how well a quadratic penalty with a quadratic
objective does at approximating the solution to an equality-constrained least
squares problem.

11.3 Lagrange multipliers
Just as solutions to unconstrained optimization problems occur at stationary
points, so do the solutions to constrained problems; we just have to work
with a slightly different functional. To minimize φ(x) subject to g(x) = 0
and h(x) ≤ 0, we form the Lagrangian

L(x, λ, µ) = φ(x) + λTg(x) + µTh(x).

where λ and µ are vectors of Lagrange multipliers. In class, we described
these multipliers by a physical analogy as forces that enforce the constraint.
At a critical point, we have the KKT conditions:

∂L

∂x
= 0 (stationarity)

µTh(x) = 0 (complementary slackness)
g = 0 and h ≥ 0 (primal feasibility)
µ ≥ 0 (dual feasibility)

If µi > 0, we say the ith inequality constraint is active.
There are two major ways of dealing with constraints in solvers. Active

set methods guess which constraints are active, and then solve an equality
constrained sub-problem. If the guess was wrong, one adjusts the choice of
active constraints and solves another equality constrained sub-problem. In
contrast, methods based on penalties or barriers deal with inequality con-
straints by adding a cost to φ that gets big as one gets close to the boundary
of the feasible region, either from the inside (barriers) or from the outside
(penalties). Interior point methods, which are among the most popular and
successful constrained optimization solvers, use a parameterized barrier func-
tion together with a continuation strategy to drive the barrier parameter to-
ward a small value that yields hard (ill-conditioned) subproblems but with
accurate results.

You should ideally understand the special case of setting and running
Newton iteration for a Lagrangian function associated with an equality-
constrained optimization problem. Determining the active set for the inequality-

65



constrained case is trickier, and probably would not be a great source of
questions for an exam.

11.4 Problems
1. Describe three algorithms to minimize ‖Ax − b‖2 subject to Cx = d,

where A ∈ Rm×n, m > n and C ∈ Rp×m, p < m: one based on
constraint elimination, one a quadratic penalty formulation, and one
via Lagrange multipliers.

2. Write a system of equations to characterize the minimum of a linear
function φ(x) = vTx on the ball xTMx = 1.

3. SupposeA is symmetric and positive definite and consider the quadratic
objective

φ(x) =
1

2
xTAx− xT b.

Suppose the global optimum has some negative components. We can
find the constrained optimum be solving a sequence of logarithmic bar-
rier problems

minimize φ(x)− µ
∑
i

log(xi).

Write a Newton iteration to solve this problem.

66


	Introduction
	Overview
	Background
	Linear algebra background
	Calculus background
	CS background
	Julia background
	Floating point
	Sensitivity, conditioning, and types of error
	Problems

	Linear systems
	Sensitivity and conditioning of linear systems
	Gaussian elimination
	LU and Cholesky
	Sparse solvers
	Iterative refinement
	Julia backslash
	Problems

	Least squares problems
	Sensitivity and conditioning of least squares
	Normal equations
	QR
	SVD
	Pseudo-inverses
	Ill-posed problems and regularization
	Problems

	Eigenvalues
	Why eigenvalues?
	Jordan to Schur
	Symmetric eigenvalue problems and SVDs
	Power method and related iterations
	QR iteration
	Problems

	Stationary iterations
	The splitting picture
	The sweeping picture
	Convergence examples
	Problems

	Krylov subspace methods
	Arnoldi and Lanczos
	Krylov subspaces for linear systems
	Convergence behavior
	Preconditioning
	Krylov subspaces for eigenvalue problems
	Problems

	Iterations in 1D
	Fixed point iteration and convergence
	Newton's method
	Bisection
	Combined strategies
	Sensitivity analysis
	Problems

	Multivariate nonlinear problems
	Nonlinear equations and optimization
	Fixed point iterations
	Newton's method for systems
	Newton's method for optimization
	Gauss-Newton and nonlinear least squares
	Problems with Newton
	Approximating Newton
	Other first-order methods
	Globalization: line search
	Globalization: trust regions
	Globalization: continuation methods
	Problems

	Constrained problems
	Constraint elimination
	Penalties and barriers
	Lagrange multipliers
	Problems


