Bindel, Spring 2023 Numerical Analysis

2023-05-03

1 Related problems

The topic of today is three related issues, all of which fall under the heading
of “optimization with noise” for some interpretation:

« What do we do when our objective function is uncertain (where the
uncertainty may or may not be random)?

o« What do we do when our objective function is expressed in terms of
(statistics of) random variables?

o How can we use randomization to more efficiently solve deterministic
optimization problem?

These three topics are closely related, but if we want to keep a full range
of options open, it is worthwhile making a distinction between them.

2 Uncertain objectives

Suppose we want to minimize ¢, but only have access to an approximation
gg. What can we hope to do? Can we approximate a minimizer of ¢ by a
minimizer of $? How close are the minimum values? The answer to all these
questions, naturally enough, is “it depends.” But we will see what we can
say in a few common cases.

2.1 Bounded error

Let’s warm up with a case where we know very little. Suppose both ¢ and
¢ are continuous and ||¢ — ¢||s < €. Let z, be a (local) minimizer of ¢, and
suppose that for some 0, ¢(z) — d(z,) > 2¢ when ||z — z,|| = §. Then we
must have that

o(r) > (x) — € > §(.) + e > Pla),

and so the minimum of ¢ over the ball Bs(z,) = {x : ||z — .|| < 0} must
occur somewhere on the interior. Therefore, ¢ must have at least one local
minimizer within § of z,.

Bindel, Spring 2023 Numerical Analysis

How do we get the type of lower bound needed to pull off an argument
like this? If ¢ is C* and Hy(z,) is positive definite, we can get an estimate
using the Taylor approximation

Ba) — B m (o —) TH (= 2%) > Sl — 2.l PAwia(H)

which suggests a radius of

€

0% 2\ o)

This estimate is pretty good when we are in a regime where the second-order
Taylor expansion describes everything well. But if we want to go out further,
we can be more precise when we have a Lipschitz condition like

[Hy(z) — Hy(y)l]2 < Mz —yl|
This would imply that

Ba) = D) 2 Sl = 2l Hy () ~ Mz)

and so the argument holds whenever
1
552()\min — Mé) > 26,

for which there is a satisfactory § < (2A\ynin)/(3M) whenever A\, > V18 Me.

2.2 Bounded gradient errors

Now suppose that we know that gg and ¢ are both differentiable, with ||[V¢ —
V| < e (we'll assume this is true everywhere, but it only need hold on a
large enough region of interest). Let z, again be a local minimizer of ¢, and
now suppose that for some ¢,
0¢
V]ju|| =1, == (x4 + du) > €.
Jull = 1, 52+ 6u) > ¢
Then ¢ must have a local minimizer inside the ball of radius J, since the
above condition and the bound on the gradient difference means
99

V|ul| =1, %(Q:* + du) > 0,

Bindel, Spring 2023 Numerical Analysis

and so the minimum of ¢ on the closed ball of radius cannot occur on the
boundary.
As before, we can estimate an appropriate radius ¢ using the second-order
Taylor approximation, which gives
99 T
%(x* +0u) & du” Hy(z)u > 0Amin(Hg(24)),

so that the condition should be satisfied a little past

€

As before, we can pull in additional regularity constraints to get a rigorous
result. For the moment, we leave this as an exercise for the ambitious reader.

The high-level point, here is that we are far better off with slightly “noisy”
gradients than we are with just slightly “noisy” function values. Here we are
using scare quotes because we’re not using any distributional information
about the difference between ¢ and g% — we are just assuming something
about it is bounded. But the fundamental message does not change much
when we look at random perturbations.

0~

3 On average

In many problems in machine learning and computational statistics, we see
functions that are naturally expressed as expectations. For example, in ma-
chine learning applications, we often have loss functions that consist of a
large number of independent terms (one per example):

o) = 3 i)

which is the same as

¢(x) = E; [vi(2)]
where 7 is assumed uniform over the index set 1,..., N in the latter expres-
sion. More generally, we can consider functions of the form

¢(z) =Ez [¢(z, 2)]

where Z is some random variable.

Bindel, Spring 2023 Numerical Analysis

3.1 Quadrature

If Z is a continuous random variable, or even a random variable over a large
finite set, it may be infeasible or very expensive to compute the expected
value and get ¢. Therefore, we need some type of approximation. For exam-
ple, we might employ a quadrature scheme where

m

o) =D w(w, z)w;

j=1

where the z; and w; are known as the quadrature nodes and weights. When
1 is smooth with respect to the Z variable and Z is drawn from a standard
low-dimensional distribution (e.g.~uniform or Gaussian random variables in
1D or 2D), we can approximate ¢ to very high accuracy using quadrature
techniques. In this case, we can use the regularity of ¢ to get error bounds on
how well ¢ (and V(;S) approximate the true expected value and its gradients.

3.2 Sample average approximation

When the random variable Z is drawn from a high-dimensional continuous
distribution, or when we do not have much smoothness of 1, we might decide
to instead approximate the expectation by a sample average. In the simplest
case, we would sample {z;}", according to the distribution of the random
variable Z and use the approximation

m

By = 30 z)

i=1

In this case, we expect the error in the approximation to behave like \/Var(y(x, Z))/m

Alternately, we could sample from a different distribution with the same
support as z and choose weights according to the ratio of the distributions
in order to get something similar to what we have above for quadrature

m

(,3(55) = Z Y (@, 2i)w;.

i=1

Here, too, we expect a 1/y/m type of approximation error.
In the sample average approximation (SAA) approach we make one draw
of the variables z; in order to get an approximation ¢, then optimize ¢. Like

Bindel, Spring 2023 Numerical Analysis

deterministic quadrature approaches, sample average approximation has an
accuracy limit that is determined by how well qg and VQAS approximate ¢ and
V¢. Unlike deterministic quadrature, though, the sample average estimator
of the mean typically decays like 1/y/m where m is the sample size. Often,
this means that we need rather large samples to get acceptable accuracy,
though matters may be improved somewhat is we use wvariance reduction
techniques like control variates or importance sampling.

3.3 Stochastic gradient methods

In sample average approximation, we use one sample {z;}7, as the basis for
computing $ ~ ¢. In stochastic gradient methods, we use a different sample
at each step. That is, we compute
2 = b — g (et &)

where E¢[g(z,§)] = V¢(z) is a Monte Carlo estimator for the gradient — this
can be from a single draw or from a larger sample (a so-called “mini-batch”).

If we take a fixed step size o and choose independent equal-sized samples
at each step, the stochastic gradient method defines a discrete-time Markov
chain, and we expect it to converge to a stationary distribution that is con-
centrated in a neighborhood of a minimum. So for nice enough functions and
a sufficiently small fixed step size a, the expected value of the optimality gap
between z* and the true minimum at z* behaves like

El¢(a") = d(2")] < cra+ (1 = c20) ™ (9(2") — ¢(27)) -

That is, the expected optimality gap converges linearly — but not to zero! To
get closer than ¢« to the true optimal value, we have to reduce the step size.
Unfortunately, reducing the step size also reduces the rate of convergence!
We can balance the two effects by taking ng steps with an initial size g to
get the error down to about c;ag, then 2ng steps of size 271y to get the error
down to about 27'ciay, and so forth. This gives us a convergence rate of
O(1/k). More generally, we can get convergence with any (sufficiently small)
schedule of step sizes such that

(o] o0
E Q= 00, E Ozz < Q.
k=1 k=1

Bindel, Spring 2023 Numerical Analysis

There are a wide variety of methods for choosing the step sizes (“learning
rate”), sometimes in conjunction with methods to choose a better search
direction than the (approximate) steepest descent direction.

The O(1/k) rate of convergence for stochastic gradient descent is quite
slow compared to the rate of convergence for ordinary grdient descent. How-
ever, each step of a stochastic gradient method may be much cheaper than
a full gradient computation, so there is a tradeoff.

3.4 Second-order, variance reduction, and beyond

Slow convergence of the stochastic gradient method comes from a combi-
nation of two effects: variance in the gradient estimate and the slow rate
of gradient descent when the problem is ill-conditioned. Fortunately, there
exist techniques that can sometimes help us address both these issues.

To address the variance in the gradient estimate, we need either a bigger
sample or smaller variance in the sample elements. Both of these approaches
are used in practice. Indeed, an alternative approach to getting SGD to
converge instead of scheduling diminishing step sizes is to schedule increasing
mini-batch sizes (leading to a few final steps that compute over all the data,
in the extreme case). Another option is to use a variance reduction technique,
with control variates as a particularly useful case.

To address the poor behavior of gradient descent even without random
error, we need to incorporate second-order information. One approach is to
use a Broyden (or BFGS) style updating scheme to estimate a Hessian; the
main trick to this is that when we update the Hessian, we need to use the
same minibatch to estimate the gradient before and after the step. Other
momentum-based methods share some relationship to the types of extrapo-
lation and acceleration techniques we have discussed earlier in this class.

There is not time in lecture to really do justice to all the variants of
stochastic gradient methods that have been considered, but I can point you
to a good paper by Bottou, Curtis, and Nocedal that covers many of the
possibilities.

4 Randomized algorithms

We can see the stochastic gradient algorithm through two lenses. On the
one hand, we are optimizing a function with (changing) random noise asso-

https://www.cs.cornell.edu/courses/cs6241/2019sp/readings/Bottou-2018-opt.pdf

Bindel, Spring 2023 Numerical Analysis

ciated with sampling error. On the other hand, we are optimizing a known
deterministic function, and just happen to be using randomization to find
estimates of the gradient that are good enough to apply gradient-descent
types of techniques.

The idea of using randomness to help us in an optimization process of
deterministic functions holds much more generally. We are not going to have
time to even skim lightly over much of this, but some of the ways in which
randomness can help our algorithms is:

« Random sampling of the objective to find good starting points for a
locally-convergent gradient-based iteration.

« Using random probing to get a good approximate Hessian to use as a
scaling matrix in a Newton-like iteration.

o Using some randomness to break out of cycling behavior in active set
solvers for constrained optimization problems.

« Using random perturbations to break out of degenerate situations that
can happen in continuation algorithms (e.g. pitchfork bifurcations).

o Randomly sampling in some local neighborhood in order to get a good
set of points to initialize a derivative-free simplex-based gradient method

o Randomly re-ordering search directions in a pattern-search method
(and then choosing the first to yield any type of improvement).

	Related problems
	Uncertain objectives
	Bounded error
	Bounded gradient errors

	On average
	Quadrature
	Sample average approximation
	Stochastic gradient methods
	Second-order, variance reduction, and beyond

	Randomized algorithms

