
Bindel, Spring 2023 Numerical Analysis

2023-05-01

1 Lay of the Land
In the landscape of continuous optimization problems, there are three ways
for things to be hard:

• Lack of smoothness
• Lack of convexity (or other structure guaranteeing unique global min-

imizers)
• Lack of information about the function

So far, we have only considered difficulties associated with lack of con-
vexity, and those only superficially – most of our algorithms only give local
minimizers, and we haven’t talked about finding global optima. We have
assumed everything has as many derivatives as we would like, and that we
are at least able to compute gradients of our objective.

Today we discuss optimization in one of the hard cases. For this class,
we will not deal with the case of problems with very hard global structure,
other than to say that this is a land where heuristic methods (simulated
annealing, genetic algorithms, and company) may make sense. But there
are some useful methods that are available for problems where the global
structure is not so hard as to demand heuristics, but the problems are hard
in that they are “black box” – that is, we are limited in what we can compute
to looking at function evaluations.

Before describing some methods, I make two pleas.
First, consider these only after having thoughtfully weighed the pros and

cons of gradient-based methods. If the calculus involved in computing the
derivatives is too painful, consider a computer algebra system, or look into
a tool for automatic differentiation of computer programs. Alternately, con-
sider whether there are numerical estimates of the gradient (via finite differ-
ences) that can be computed more quickly than one might expect by taking
advantage of the structure of how the function depends on variables. But if
you really have to work with a black box code, or if the pain of computing
derivatives (even with a tool) is too great, a gradient-free approach may be
for you.

Second, do not fall into the trap of thinking these methods should be
simple to implement. Nelder-Mead is perhaps simple to implement, which is

Bindel, Spring 2023 Numerical Analysis

one reason why it remains so popular; it also fails to converge on many exam-
ples, and rarely converges fast. There are various pattern search methods and
model-based methods with more robust convergence or better convergence
rates, and there exist good implementations in the world (though Powell
himselff has passed, his PDFO suite is still going strong!). And there are
much more thorough texts and reviews than this set of lecture notes; a few
I like include:

• Powell, “Direct search algorithms for optimization calculations” – cov-
ers a lot of methods, and particularly Powell’s algorithms

• Powell, “A view of algorithms for optimization without derivatives” –
played a big role in this presentation

• Kolda, Lewis, and Torczon, “Optimization by direct search: new per-
spectives on some classical and modern methods” – deals with one
interesting family of methods (very thoroughly)

• Conn, Scheinberg, and Vicente, “Introduction to Derivative-Free Opti-
mization” – available for access via the Cornell library subscription to
SIAM ebooks

• Audet and Warren, “Derivative-Free and Blackbox Optimization” – a
Springer textbook, but also available courtesy the Cornell library

• Larson, Menickelly, and Wild, “Derivative-free optimization methods”
– a recent Acta Numerica survey, again by people who know what they
are doing

2 Model-based methods
The idea behind Newton’s method is to successively minimize a quadratic
model of the function behavior based on a second-order Taylor expansion
about the most recent guess, i.e. xk+1 = xk + p where

argminp φ(x) + φ′(x)p+
1

2
pTH(x)p.

In some Newton-like methods, we use a more approximate model, usually
replacing the Hessian with something simpler to compute and factor. In
simple gradient-descent methods, we might fall all the way back to a linear
model, though in that case we cannot minimize the model globally – we need
some other way of controlling step lengths. We can also explicitly incorporate

https://www.pdfo.net/
https://doi.org/10.1017/S0962492900002841
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2007_03.pdf
https://epubs.siam.org/doi/10.1137/S003614450242889
https://epubs.siam.org/doi/10.1137/S003614450242889
https://epubs-siam-org.proxy.library.cornell.edu/doi/book/10.1137/1.9780898718768
https://epubs-siam-org.proxy.library.cornell.edu/doi/book/10.1137/1.9780898718768
https://link-springer-com.proxy.library.cornell.edu/book/10.1007/978-3-319-68913-5
https://arxiv.org/pdf/1904.11585.pdf

Bindel, Spring 2023 Numerical Analysis

our understanding of the quality of the model by specifying a constraint that
keeps us from moving outside a “trust region” where we trust the model to
be useful.

In derivative-free methods, we will keep the basic “minimize the model”
approach, but we will use models based on interpolation (or regression) in
place of the Taylor expansions of the Newton approach. There are several
variants.

2.1 Finite difference derivatives
Perhaps the simplest gradient-free approach (though not necessarily the most
efficient) takes some existing gradient-based approach and replaces gradients
with finite difference approximations. There are a two difficulties with this
approach:

• If φ : Rn → R, then computing the ∇φ(x) by finite differences involves
at least n+1 function evaluations. Thus the typical cost per step ends
up being n + 1 function evaluations (or more), where methods that
are more explicitly designed to live off samples might only use a single
function evaluation per step.

• The finite difference approximations depends on a step size h, and
their accuracy is a complex function of h. For h too small, the error
is dominated by cancellation, revealing roundoff error in the numerical
function evaluations. For h large, the error depends on both the step
size and the local smoothness of the function.

The first issue (requiring n + 1 function evaluations to get the same in-
formation content as one function-and-gradient evaluation) is not unique to
finite difference computations, and indeed tends to be a limit to a lot of
derivative-free methods.

2.2 Linear models
A method based on finite difference approximations of gradients might use
n + 1 function evaluations per step: one to compute a value at some new
point, and n more in a local neighborhood to compute values to estimate
derivatives. An alternative is to come up with an approximate linear model
for the function using n+1 function evaluations that may include some “far
away” function evaluations from previous steps.

Bindel, Spring 2023 Numerical Analysis

We insist that the n+1 evaluations form a simplex with nonzero volume;
that is, to compute from evaluations at points x0, . . . , xn, we want {xj−x0}nj=1

to be linearly independent vectors. In that case, we can build a model x 7→
bTx + c where b ∈ Rn and c ∈ R are chosen so that the model interpolates
the function values. Then, based on this model, we choose a new point.

The following routine computes a simplex estimate ∇̂f(x0) of the gradient
∇f(x) based on the equations

f(xi) = f(x0) + (xi − x0)
T ∇̂f(x0),

Our gradient estimator therefore has the form

A∇̂f(x0) = y, A =

(x1 − x0)
T

...
(xn − x0)

 , y =

f(x1)− f(x0)
...

f(xn)− f(x0)

 .

Note that if we adapt the simplex by changing one point at a time, we can
update the factorization of A in O(d2) time rather than recomputing every
time at a cost of O(d3). We do not bother to do this here, though.

function simplex_gradient(xs, fxs)

d, np1 = size(xs)

A = (xs[:,2:end].-xs[:,1])'

∇f_s = A\(fxs[2:end].-fxs[1])

∇f_s, cond(A)

end

The true gradient satisfies

A∇f(x0) = y + r;

where the vector r consist of remainder terms from Taylor’s theorem with
remainder. If the gradient is Lipschitz with constant M , then the terms
satisfy

ri ≤ M‖xi − x0‖2/2 ≤ Md2/2

where d is the diameter of the simplex. Therefore, we expect

‖∇̂f(x0)−∇f(x0)‖ ≤ ‖A−1r‖ ≤ ‖(A/d)−1‖Md/2

Bindel, Spring 2023 Numerical Analysis

Figure 1: Simplex gradient estimate error. As y approaches 1, the simplex
approaches degeneracy (and the linear system we have to solve approaches
singularity).

where ‖(A/d)−1‖ is scaled so that only the geometry of the simplex matters.
Alternately, we have the relative error bound

‖∇̂f(x0)−∇f(x0)‖
‖∇f(x0)‖

≤ κ(A)
Md

2‖y‖/d

However we write the bounds, a key aspect to these methods is ensuring
that the computation of the affine function from the simplex remains well-
conditioned.

We give an example of the effects of geometry below by using a simplex
gradient approximation of a 2D function where we make the simplex closer
and closer to degenerate. As we get closer to degenerate, the error in the
gradient estimate increases (Figure 1).

Getting a good gradient estimate gives a sense of which way to go, but in
order to get good convergence we also need a globalization strategy, which
gets more complicated. For example, line search with sufficient decrease can
fail because of an inaccurate gradient estimate, in which case we may need
to reconstruct a new simplex with a good geometry and a small diameter.

Bindel, Spring 2023 Numerical Analysis

There are also trust-region methods that use linear approximations based
on interpolation over a simplex. One of the most popular of this family
of method is Powell’s COBYLA algorithm (Constrained Optimization BY
Linear Approximation).

2.3 Quadratic models
One can build quadratic models of a function from only function values,
but to fit a quadratic model in n-dimensional space, we usually need (n +
2)(n + 1)/2 function evaluations – one for each of the n(n + 1)/2 distinct
second partials, and n + 1 for the linear part. Hence, purely function-based
methods that use quadratic models tend to be limited to low-dimensional
spaces. However, there are exceptions. The NEWUOA method (again by
Powell) uses 2n+1 samples to build a quadratic model of the function with a
diagonal matrix at second order, and then updates that matrix on successive
steps in a Broyden-like way.

2.4 Surrogates and response surfaces
Polynomial approximations are useful, but they are far from the only meth-
ods for approximating objective functions in high-dimensional spaces. One
popular approach is to use kernel-based approximations; for example, we
might write a model

s(x) =
m∑
j=1

cjφ(‖x− xj‖)

where the coefficients cj are chosen to satisfy m interpolation conditions at
points x1, . . . , xm. If we add a polynomial term, you’ll recognize this as the
form of the interpolants from project 1, but the spline interpretation is only
one way of thinking about this class of approximators. Another option is to
interpret this as a Gaussian process model; this is used, for example, in most
Bayesian Optimization (BO) methods. There are a variety of other surfaces
one might consider, as well.

In addition to fitting a surface that interpolates known function values,
there are also methods that use regression to fit some set of known function
values in a least squares sense. This is particularly useful when the function
values have noise.

Bindel, Spring 2023 Numerical Analysis

3 Pattern search and simplex
So far, the methods we have described are explicit in building a model that
approximates the function. However, there are also methods that use a
systematic search procedure in which a model does not explicitly appear.
These sometimes go under the heading of “direct search” methods.

3.1 Nelder-Mead
The Nelder-Mead algorithm is one of the most popular derivative-free opti-
mizers around. For example, this is the default algorithm used for derivative
free optimization with Optim.jl. As with methods like COBYLA, the Nelder-
Mead approach maintains a simplex of n+1 function evaluation points that
it updates at each step. In Nelder-Mead, one updates the simplex based on
function values at the simplex corners, the centroid, and one other point; or
one contracts the simplex.

Visualizations of Nelder-Mead are often quite striking: the simplex ap-
pears to crawl downhill like some sort of mathematical amoeba. But there
are examples of functions where Nelder-Mead is not guaranteed to converge
to a minimum at all.

3.2 Hook-Jeeves and successors
The basic idea of pattern search methods is to either

• Keep going if a promising direction turns out good, or
• Poll points in a pattern around the current iterate to find a new direc-

tion

For example, in the Hook-Jeeves approach (one of the earliest pattern
search methods), one would at each polling move evaluate φ(x(k) ±∆ej) for
each of the n coordinate directions ej. If one of the new points is better
than x(k), it becomes x(k+1) (and we may increase ∆ if we already took a
step in this direction to get from x(k−1) to x(k). Of x(k) is better than any
surrounding point, we decrease ∆ and try again.

function hooke_jeeves(ϕ, x; Δ=1.0, Δtol=1e-3, maxevals=1000,

monitor=(x,Δ,poll)->nothing)

Bindel, Spring 2023 Numerical Analysis

ϕ0 = ϕ(x) # Current best value found

poll = true # Poll step or keep going?

evals = 0 # Number of function evaluations

k = 0 # Current search direction

Possible search directions (+/- in each coordinate direction)

d = length(x)

P = [Matrix(I,d,d) -Matrix(I,d,d)]

while Δ > Δtol && evals < maxevals

monitor(x, Δ, poll)

if poll

Poll in neighborhood. Pick the best descent direction;

if we get no descent, cut the radius and try again.

ϕPmin, kmin = findmin(ϕ(x + Δ*p) for p in eachcol(P))

evals += 2*d

if ϕ0 >= ϕPmin

k = kmin

poll = false

else

Δ = Δ/2

end

else

Take a step, accept if decrease, poll otherwise

xnew = x + Δ*P[:,k]

ϕnew = ϕ(xnew)

evals += 1

if ϕnew < ϕ0

x[:] = xnew

ϕ0 = ϕnew

else

poll = true

end

end

Bindel, Spring 2023 Numerical Analysis

Figure 2: Convergence of the Hooke-Jeeves algorithm for a quadratic model
problem.

end

x, Δ

end

We give an example of the convergence of Hooke-Jeeves on a quadratic
model problem with the code below (Figure 2).

More generally, we would evaluate φ(x(k) + d) for d ∈ G(∆), a generating
set of directions with some scale factor ∆. There are many variants on the
“search-and-poll” strategy of the general pattern search; for example,

• We can do a random selection from the pattern directions and choose
the first promising one (rather than polling all directions).

• We can use a model to suggest some extra promising directions in
addition to the pattern, or to modify from a fixed pattern.

Simple methods like Hooke-Jeeves converge for smooth objectives, but
may fail in the nonsmooth case. However, the mesh adaptive direct search
(MADS) class of methods can converge even in this case.

Bindel, Spring 2023 Numerical Analysis

4 Summarizing thoughts
Direct search methods have been with us for more than half a century: the
original Hook-Jeeves paper was from 1961, and the Nelder-Mead paper goes
back to 1965. These methods are attractive in that they require only the abil-
ity to compute objective function values, and can be used with “black box”
codes – or even with evaluations based on running a physical experiment!
Computing derivatives requires some effort, even when automatic differen-
tiation and related tools are available, and so gradient-free approaches may
also be attractive because of ease-of-use.

Gradient-free methods often work well in practice for solving optimization
problems with modest accuracy requirements. This is true even of methods
like Nelder-Mead, for which there are examples of very nice functions (smooth
and convex) for which the method is guaranteed to mis-converge. But though
the theoretical foundations for these methods have gradually improved with
time, the theory for gradient-free methods is much less clear-cut than the
theory for gradient-based methods. Gradient-based methods also have a
clear advantage at higher accuracy requirements.

Gradient-free methods do not free a user from the burden of finding a
good initial guess. Methods like Nelder-Mead and pattern search will, at
best, converge to local minima. Many heuristic methods for finding global
minimizers are gradient-free; I include among these methods like simulated
annealing, genetic algorithms, and Bayesian optimization techniques. On the
other hand, branch-and-bound methods that yield provable global minimizers
are often heavily dependent on derivatives (or bounds proved with the help
of derivatives).

Just because a method does not explicitly use gradients does not mean
it doesn’t rely on them implicitly. Gradient-free methods may have just
as much difficulty with functions that are discontinuous, or that have large
Lipschitz constants – particularly those methods that implicitly build a local
linear or quadratic model.

In many areas in numerics, an ounce of analysis pays for a pound of
computation. If the computation is to be done repeatedly, or must be done to
high accuracy, then it is worthwhile to craft an approach that takes advantage
of specific problem structure. On the other hand, sometimes one just wants
to do a cheap exploratory computation to get started, and the effort of using
a specialized approach may not be warranted. An overview of the options
that are available is useful for approaching these tradeoffs intelligently.

	Lay of the Land
	Model-based methods
	Finite difference derivatives
	Linear models
	Quadratic models
	Surrogates and response surfaces

	Pattern search and simplex
	Nelder-Mead
	Hook-Jeeves and successors

	Summarizing thoughts

