2023-04-28

1 Inequality constraints

Problems with inequality constraints can be reduced to problems with equality constraints if we can only figure out which constraints are active at the solution. We use two main strategies to tackle this task:

- Active set methods guess which constraints are active, then solve an equality-constrained problem. If the solution satisfies the KKT conditions, we are done. Otherwise, we update the guess of the active set by looking for constraint violations or negative multipliers. The simplex method for linear programs is a famous active set method. The difficulty with these methods is that it may take many iterations before we arrive on the correct active set.
- Interior point methods take advantage of the fact that barrier formulations do not require prior knowledge of the active constraints; rather, the solutions converge to an appropriate boundary point as one changes the boundary.

Between the two, active set methods often have an edge when it is easy to find a good guess for the constraints. Active set methods are great for families of related problems, because they can be "warm started" with an initial guess for what constraints will be active and for the solution. Many strong modern solvers are based on sequential quadratic programming, a Newton-like method in which the model problems are linearly-constrained quadratic programs that are solved by an active set iteration. In contrast to active set methods, interior point methods spend fewer iterations sorting out which constraints are active, but each iteration may require more work.

2 Quadratic programs with inequality constraints

We now consider a quadratic objective with linear inequality constraints:

$$
\begin{aligned}
\phi(x) & =\frac{1}{2} x^{T} H x-x^{T} d \\
c(x) & =A^{T} x-b \leq 0,
\end{aligned}
$$

Figure 1: Example constrained quadratic problem.
where $H \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, $A \in \mathbb{R}^{n \times m}$ with $m<n$, and $b \in \mathbb{R}^{m}$. The KKT conditions for this problem are

$$
\begin{aligned}
H x-d+A \lambda & =0 \\
A^{T} x-b & \leq 0 \\
\lambda & \geq 0 \\
\lambda_{i}\left(A^{T} x-b\right)_{i} & =0 .
\end{aligned}
$$

The active set is the set of i such that $\left(A^{T} x-b\right)_{i}=0$. We assume that the active columns of A are always linearly independent (e.g. $0 \leq x_{i}$ and $x_{i} \leq 1$ can co-exist, but it is not OK to have both $x_{i} \leq 1$ and $x_{i} \leq 2$).

Examples are always good, as are pictures. We will borrow the following 2D example from Nocedal and Wright (Example 16.3) - see Figure 1.

```
begin
# Objective in Nocedal and Wright: }\phi(x)=(x[1]-1.0)^2 + (x[2]-2.5)^
# We will get rid of a constant term to get it to our usual form
# (and scale by 1/2)
#
```

```
    H = [1.0 0.0; 0.0 1.0]
    d = [1.0; 2.5]
    \# Constraints per Nocedal and Wright -- we rewrite so the inequality i
    \# goes the other way
    \# \(x 1-2 x 2+2 \geq 0\)
    \# -x1 - \(2 x 2+6 \geq 0\)
    \# -x1 + \(2 \times 2+2 \geq 0\)
    \# \(x 1 \geq 0\)
    \# \(x 2 \geq 0\)
    \#
    \(A=\left[\begin{array}{ll}-1.0 & 2.0 ;\end{array}\right.\)
        1.02 .0 ;
        1.0-2.0 ;
        -1.0 0.0 ;
        0.0-1.0 ]'
    b = [2.0; 6.0; 2.0; 0.0; 0.0]
    \# Draw a plot of the quadratic and the constraints
    function plot_ex16_3()
        \(q(x, y)=(x-1.0)^{\wedge} 2+(y-2.5)^{\wedge} 2\)
        corners \(=[0.00 .0\);
        2.00 .0 ;
        4.01 .0 ;
        2.02 .0 ;
        0.01 .0 ]
        xx = range(-1.0, 4.0, length=101)
        p = plot(corners[:,1], corners[:,2], st=:shape)
        plot!(xx, xx, q, st=:contour, legend=false)
        p
    end
    plot_ex16_3()
end
```


3 An active set approach

At the k th step in an active set QP solver, we update an iterate x^{k} approximating the constrained minimizer and we update a corresponding working set \mathcal{W}^{k} approximating the active set. A step of this solver looks like:

1. Choose a step p^{k} by minimizing the quadratic form assuming the constraints in \mathcal{W}^{k} are the active constraints. This gives an equalityconstrained subproblem.
2. If p^{k} is zero, then
3. Compute the Lagrange multipliers associated with the set \mathcal{W}^{k}.
4. If all the multipliers are non-negative, terminate.
5. Otherwise, let λ_{j} be the most negative multiplier, and set $\mathcal{W}^{k+1}=$ $\mathcal{W}^{k} \backslash\{j\}$
6. Otherwise $p^{k} \neq 0$.
7. Advance $x^{k+1}=x^{k}+\alpha_{k} p^{k}$ where the step length α_{k} is the largest allowed value (up to one) such that x^{k+1} is feasible.
8. If $\alpha_{k}<1$, then there is (at least) one blocking constraint j such that $\left(A^{T} x^{k+1}-b\right)_{j}=0$ and $j \notin \mathcal{W}^{k}$. Update $\mathcal{W}^{k+1}=\mathcal{W}^{k} \cup\{j\}$.

If we do not attempt any particular efficiency, this is mostly straightforward to code. Convergence for our test problem is shown in Figure 2

```
function qp_as(x0, H, d, A, b; ptol=1e-8, W0=[], nsteps=100,
    monitor=(x, W)->nothing)
    n = length(x0)
    m = length(b)
    W = zeros(Bool, m)
    x = copy(x0)
    p = zeros(n)
    \lambda = zeros(m)
    W[W0] .= true
    monitor(x, W)
    # Compute Cholesky factorization for range space solver
```


Figure 2: Example constrained quadratic problem and path taken by active set solver.

```
F = cholesky(H)
L = F.L
Y = L\A
c=L\d
for k = 1:nsteps
    ## Solve the equality constrained subproblem (range space method)
    \lambda[:] .= 0.0
    \lambda[W] = ( Y[:,W]'*Y[:,W] )\( Y[:,W]'*c - b[W] )
    p[:] = L'\(c-Y[:,W]*\lambda[W])-x
    if norm(p) < ptol
        # Find most negative multiplier (if there is one)
        min\lambda = 0.0
        j = 0
        for k = 1:m
```

```
            if }\lambda[k]<min
                        min}\lambda=\lambda[k
                        j = k
                    end
            end
            if j == 0
            return x # All multipliers non-negative, done!
        else
            W[j] = false # Release jth constraint
            end
        else
            # Figure out step (and any blocking constraint)
            \alpha=1.0
            r = b-A'*x
            u = A'*p
            blocking_idx = 0
            for k = 1:m
            if !(k in W) && ( }\mp@subsup{\alpha}{}{*}u[k] > r[k]
            \alpha = r[k]/u[k]
            blocking_idx = k
            end
        end
            # Take step and update list of active constraints
            x[:] += \alpha*p
            if blocking_idx > 0
            W[blocking_idx] = true
        end
        monitor(x, W)
    end
    end
    error("Did not converge after $nsteps steps")
end
```

A few remarks about this strategy are in order:

- The strategy is guaranteed not to cycle - the working set at any given iterate is distinct from the working set at any other iterate. Assuming the steps are computed exactly (via Newton), the iteration converges in a finite number of steps. That said, there are an exponential number of working sets; and, as with the simplex method for linear programming, there are examples where the algorithm may have exponential complexity because of the cost of exploring all the working set. But, as with the simplex method, this is not the common case.
- The strategy only changes the working set by adding or removing one constraint at a time. Hence, if \mathcal{A} is the true active set, the number of steps required is at least $\left|\mathcal{W}^{0}\right|+|\mathcal{A}|-2\left|\mathcal{W}^{0} \cap \mathcal{A}\right|$. This is bad news if there are many possible constraints and we lack a good initial guess as to which ones will be active.
- If we compute the steps p^{k} as described above, the cost per step (after an initial factorization of the Hessian and triangular solves on the constraints) would appear to be $O\left(n^{2}+n\left|\mathcal{W}^{k}\right|^{2}\right)$. In practice, though, each linear system differs from the previous system only through the addition or deletion of a constraint. If we are clever with our numerical linear algebra, and re-use the factorization work already invested through updating and downdating, we can reduce the cost per step.

4 Barriers: hard and soft

Before we proceed, a word is in order about the relationship between Lagrange multipliers and barriers or penalties. To be concrete, let us consider the inequality-constrained problem

$$
\operatorname{minimize} \phi(x) \text { s.t. } c(x) \leq 0,
$$

where $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $m<n$, and the inequality should be interpreted elementwise. In a barrier formulation, we approximate the problem by problems of the form

$$
\operatorname{minimize} \phi(x)-\mu \sum_{j=1}^{m} \log \left(-c_{j}(x)\right)
$$

where the second term shoots to infinity as $c_{j}(x) \rightarrow 0$; but for any fixed $c_{j}(x)<0$ it becomes negligible once μ is small enough. Differentiating this
objective gives us the critical point equations

$$
\nabla \phi(\hat{x}(\mu))-\sum_{j=1}^{m} \frac{\mu}{c_{j}(\hat{x}(\mu))} \nabla c_{j}(\hat{x}(\mu))=0
$$

By way of comparison, if we were to try to exactly optimize this inequality constrained problem, we would want to satisfy the KKT conditions

$$
\begin{aligned}
\nabla \phi(x)+\nabla c(x) \lambda & =0 \\
c(x) & \leq 0 \\
\lambda & \geq 0 \\
\lambda_{j}(x) c_{j}(x) & =0 .
\end{aligned}
$$

Comparing the two, we see that the quantities $\hat{\lambda}_{j}(\mu) \equiv-\mu / c_{j}\left(x_{*}(\mu)\right)$ should approximate the Lagrange multipliers: they play the same role in the equation involving the gradient of ϕ, they are always positive for $\mu>0$, and $\hat{\lambda}_{j}\left(x_{*}(\mu)\right) \rightarrow 0$ provided $c_{j}\left(x_{*}(\mu)\right) \nrightarrow 0$.

I like to think of barriers and penalties in physical terms as being like slightly flexible walls. In real life, when you push on a wall, however stiff, there is a little bit of give. What we see as an opposing force generated by a rigid wall is really associated with that little bit of elastic give. But a good idealization is that of a perfectly rigid wall, which does not give at all. Instead, it responds to conctact with exactly the amount of force normal to the wall surface that is required to counter any force pushing into the wall. That equal-and-opposite force is exactly what is captured by Lagrange multipliers, where the very stiff elastic response is captured by the barrier or penalty formulation, with the parameter μ representing the compliance of the barrier (inverse stiffness).

The weakness of a penalty or barrier approach is two-fold: if μ is far from zero, we have a thick and spongy barrier (a poor approximation to the infinitely rigid case); whereas if μ is close to zero, we have a nearlyrigid barrier, but the Hessian of the augmented barrier function becomes very ill-conditioned, scaling like μ^{-1}. In contrast, with a Lagrange multiplier formulation, we have a perfect barrier and no problems with ill-conditioning, but at the cost of having to explicitly determine whether the optimum is at one or more of the constraint surfaces, and also what "contact forces" are needed to balance the negative gradient of ϕ that pushes into the barrier.

Several modern algorithmic approaches, such as augmented Lagrangian and interior point methods, get the best of both perspectives by combining a penalty or barrier term with a Lagrange multiplier computation.

5 An interior point strategy

Having touched on the relation between Lagrange multipliers and logarithmic barriers, let us now turn to an interior point method for quadratic programming. We start by rewriting the constraints $A^{T} x-b \leq 0$ in terms of an extra set of slack variables:

$$
y=b-A^{T} x \geq 0
$$

With this definition, we write the KKT conditions as

$$
\begin{aligned}
H x-d+A \lambda & =0 \\
A^{T} x-b+y & =0 \\
\lambda_{i} y_{i} & =0 \\
y_{i}, \lambda_{i} & \geq 0 .
\end{aligned}
$$

Interior point methods solve this system by applying Newton-like iterations to the three equations, while at the same time ensuring that the inequalities are enforced strictly at every step (that is, every step is interior to the feasible domain).

Compare this to the critical point conditions for the barrier problem

$$
\text { minimize } \frac{1}{2} x^{T} H x-x^{T} d-\gamma \sum_{j=1}^{m} \log \left(y_{j}\right)
$$

for some small value of the barrier parameter γ, where we note that

$$
\nabla_{x}\left(-\gamma \sum_{j=1}^{n} \log \left(y_{j}\right)\right)=A \hat{\lambda}, \quad \hat{\lambda}_{j}=\frac{\gamma}{y_{j}}
$$

and we can rewrite this system as

$$
\begin{aligned}
H x-d+A \hat{\lambda} & =0 \\
A^{T} x-b+y & =0 \\
y_{i} \hat{\lambda}_{i}-\gamma & =0 .
\end{aligned}
$$

Figure 3: Example constrained quadratic problem with central path.

Typical interior point methods take guarded Newton steps (or Newton-like steps) on this system of equations, which can be regarded as a relaxation of the KKT conditions or as a critical point of a barrier formulation. The path traced out as μ varies is known as the "central path."

We plot the central path taken for our test problem in Figure 3.
function barrier_qp(x0, $H, d, A, b, \gamma ; n s t e p s=20, p t o l=1 e-8)$

```
n = length(d)
m = length(b)
\sigma = 0.5
x = copy(x0)
y = b-A'*x
\lambda = Y./y
F(x, y, \lambda) = [H*x - d + A*\lambda;
        A'*x - b + y;
        y.*\lambda .- Y]
J(x, y, \lambda) = [H zeros(n,m) A;
```

```
                A' I zeros(m,m);
zeros(m,n) diagm(\lambda) diagm(y)]
    \alpha = 1.0
    p = -(J(x, y, \lambda) \ F(x, y, \lambda))
    for k = 1:nsteps
        xnew = x + \alpha*p[1:n]
        if all(A'*xnew-b .<= 0.0)
            x = xnew
            y += \alpha*p[n+1:n+m]
            \lambda += \alpha*p[n+m+1:end]
            if \alpha == 1.0 && norm(p) < ptol
            return x, \lambda
        end
        \alpha = 1.0
        p = -(J(x, y, \lambda) \ F(x, y, \lambda))
        else
            \alpha /= 2.0
        end
    end
    error("Did not converge in $nsteps steps")
end
```

The parameter γ is adjusted dynamically during the solve, and is usually written as $\gamma=\sigma \mu$ where $\sigma \in[0,1]$ is the centering parameters and $\mu=y^{T} \lambda / m$ is the complimentarity measure, which should go to zero as we approach a problem solution. Getting all the details right is somewhat complicated, though, and we recommend using a package written by someone with some expertise.

Interior point methods avoid the problem of having to do a combinatorial search to figure out the correct active set. At the same time, active set methods may be more efficient for problems where we have a good initial guess at the active set. Neither approach is universally preferable. Indeed, it is possible to take a hybrid approach where an interior point method (or something similar) is used to estimate which constraints are actually active, and then an active set method serves to "clean up" the solution.

