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1 Inequality constraints
Problems with inequality constraints can be reduced to problems with equal-
ity constraints if we can only figure out which constraints are active at the
solution. We use two main strategies to tackle this task:

• Active set methods guess which constraints are active, then solve an
equality-constrained problem. If the solution satisfies the KKT condi-
tions, we are done. Otherwise, we update the guess of the active set by
looking for constraint violations or negative multipliers. The simplex
method for linear programs is a famous active set method. The diffi-
culty with these methods is that it may take many iterations before we
arrive on the correct active set.

• Interior point methods take advantage of the fact that barrier formu-
lations do not require prior knowledge of the active constraints; rather,
the solutions converge to an appropriate boundary point as one changes
the boundary.

Between the two, active set methods often have an edge when it is easy
to find a good guess for the constraints. Active set methods are great for
families of related problems, because they can be “warm started” with an
initial guess for what constraints will be active and for the solution. Many
strong modern solvers are based on sequential quadratic programming, a
Newton-like method in which the model problems are linearly-constrained
quadratic programs that are solved by an active set iteration. In contrast to
active set methods, interior point methods spend fewer iterations sorting out
which constraints are active, but each iteration may require more work.

2 Quadratic programs with inequality con-
straints

We now consider a quadratic objective with linear inequality constraints:

φ(x) =
1

2
xTHx− xTd

c(x) = ATx− b ≤ 0,
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Figure 1: Example constrained quadratic problem.

where H ∈ Rn×n is symmetric and positive definite, A ∈ Rn×m with m < n,
and b ∈ Rm. The KKT conditions for this problem are

Hx− d+ Aλ = 0

ATx− b ≤ 0

λ ≥ 0

λi(A
Tx− b)i = 0.

The active set is the set of i such that (ATx − b)i = 0. We assume that
the active columns of A are always linearly independent (e.g. 0 ≤ xi and
xi ≤ 1 can co-exist, but it is not OK to have both xi ≤ 1 and xi ≤ 2).

Examples are always good, as are pictures. We will borrow the following
2D example from Nocedal and Wright (Example 16.3) – see Figure 1.

begin

# Objective in Nocedal and Wright: ϕ(x) = (x[1]-1.0)^2 + (x[2]-2.5)^2

# We will get rid of a constant term to get it to our usual form

# (and scale by 1/2)

#
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H = [1.0 0.0; 0.0 1.0]

d = [1.0; 2.5]

# Constraints per Nocedal and Wright -- we rewrite so the inequality i

# goes the other way

# x1 - 2 x2 + 2 ≥ 0

# -x1 - 2 x2 + 6 ≥ 0

# -x1 + 2 x2 + 2 ≥ 0

# x1 ≥ 0

# x2 ≥ 0

#

A = [-1.0 2.0 ;

1.0 2.0 ;

1.0 -2.0 ;

-1.0 0.0 ;

0.0 -1.0 ]'

b = [2.0; 6.0; 2.0; 0.0; 0.0]

# Draw a plot of the quadratic and the constraints

function plot_ex16_3()

q(x,y) = (x-1.0)^2 + (y-2.5)^2

corners = [0.0 0.0 ;

2.0 0.0 ;

4.0 1.0 ;

2.0 2.0 ;

0.0 1.0 ]

xx = range(-1.0, 4.0, length=101)

p = plot(corners[:,1], corners[:,2], st=:shape)

plot!(xx, xx, q, st=:contour, legend=false)

p

end

plot_ex16_3()

end
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3 An active set approach
At the kth step in an active set QP solver, we update an iterate xk approx-
imating the constrained minimizer and we update a corresponding working
set Wk approximating the active set. A step of this solver looks like:

1. Choose a step pk by minimizing the quadratic form assuming the con-
straints in Wk are the active constraints. This gives an equality-
constrained subproblem.

2. If pk is zero, then

1. Compute the Lagrange multipliers associated with the set Wk.
2. If all the multipliers are non-negative, terminate.
3. Otherwise, let λj be the most negative multiplier, and set Wk+1 =

Wk \ {j}

3. Otherwise pk 6= 0.

1. Advance xk+1 = xk +αkp
k where the step length αk is the largest

allowed value (up to one) such that xk+1 is feasible.
2. If αk < 1, then there is (at least) one blocking constraint j such

that (ATxk+1 − b)j = 0 and j 6∈ Wk. Update Wk+1 = Wk ∪ {j}.

If we do not attempt any particular efficiency, this is mostly straightfor-
ward to code. Convergence for our test problem is shown in Figure 2

function qp_as(x0, H, d, A, b; ptol=1e-8, W0=[], nsteps=100,

monitor=(x, W)->nothing)

n = length(x0)

m = length(b)

W = zeros(Bool, m)

x = copy(x0)

p = zeros(n)

λ = zeros(m)

W[W0] .= true

monitor(x, W)

# Compute Cholesky factorization for range space solver
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Figure 2: Example constrained quadratic problem and path taken by active
set solver.

F = cholesky(H)

L = F.L

Y = L\A

c = L\d

for k = 1:nsteps

## Solve the equality constrained subproblem (range space method)

λ[:] .= 0.0

λ[W] = ( Y[:,W]'*Y[:,W] )\( Y[:,W]'*c - b[W] )

p[:] = L'\(c-Y[:,W]*λ[W])-x

if norm(p) < ptol

# Find most negative multiplier (if there is one)

minλ = 0.0

j = 0

for k = 1:m



Bindel, Spring 2023 Numerical Analysis

if λ[k] < minλ

minλ = λ[k]

j = k

end

end

if j == 0

return x # All multipliers non-negative, done!

else

W[j] = false # Release jth constraint

end

else

# Figure out step (and any blocking constraint)

α = 1.0

r = b-A'*x

u = A'*p

blocking_idx = 0

for k = 1:m

if !(k in W) && (α*u[k] > r[k])

α = r[k]/u[k]

blocking_idx = k

end

end

# Take step and update list of active constraints

x[:] += α*p

if blocking_idx > 0

W[blocking_idx] = true

end

monitor(x, W)

end

end

error("Did not converge after $nsteps steps")

end
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A few remarks about this strategy are in order:

• The strategy is guaranteed not to cycle — the working set at any given
iterate is distinct from the working set at any other iterate. Assuming
the steps are computed exactly (via Newton), the iteration converges
in a finite number of steps. That said, there are an exponential number
of working sets; and, as with the simplex method for linear program-
ming, there are examples where the algorithm may have exponential
complexity because of the cost of exploring all the working set. But,
as with the simplex method, this is not the common case.

• The strategy only changes the working set by adding or removing one
constraint at a time. Hence, if A is the true active set, the number of
steps required is at least |W0| + |A| − 2|W0 ∩ A|. This is bad news if
there are many possible constraints and we lack a good initial guess as
to which ones will be active.

• If we compute the steps pk as described above, the cost per step (af-
ter an initial factorization of the Hessian and triangular solves on the
constraints) would appear to be O(n2 + n|Wk|2). In practice, though,
each linear system differs from the previous system only through the
addition or deletion of a constraint. If we are clever with our numer-
ical linear algebra, and re-use the factorization work already invested
through updating and downdating, we can reduce the cost per step.

4 Barriers: hard and soft
Before we proceed, a word is in order about the relationship between La-
grange multipliers and barriers or penalties. To be concrete, let us consider
the inequality-constrained problem

minimize φ(x) s.t. c(x) ≤ 0,

where c : Rn → Rm with m < n, and the inequality should be interpreted ele-
mentwise. In a barrier formulation, we approximate the problem by problems
of the form

minimize φ(x)− µ

m∑
j=1

log(−cj(x)),

where the second term shoots to infinity as cj(x) → 0; but for any fixed
cj(x) < 0 it becomes negligible once µ is small enough. Differentiating this



Bindel, Spring 2023 Numerical Analysis

objective gives us the critical point equations

∇φ(x̂(µ))−
m∑
j=1

µ

cj(x̂(µ))
∇cj(x̂(µ)) = 0.

By way of comparison, if we were to try to exactly optimize this inequality
constrained problem, we would want to satisfy the KKT conditions

∇φ(x) +∇c(x)λ = 0

c(x) ≤ 0

λ ≥ 0

λj(x)cj(x) = 0.

Comparing the two, we see that the quantities λ̂j(µ) ≡ −µ/cj(x∗(µ)) should
approximate the Lagrange multipliers: they play the same role in the equa-
tion involving the gradient of φ, they are always positive for µ > 0, and
λ̂j(x∗(µ)) → 0 provided cj(x∗(µ)) 6→ 0.

I like to think of barriers and penalties in physical terms as being like
slightly flexible walls. In real life, when you push on a wall, however stiff,
there is a little bit of give. What we see as an opposing force generated
by a rigid wall is really associated with that little bit of elastic give. But
a good idealization is that of a perfectly rigid wall, which does not give at
all. Instead, it responds to conctact with exactly the amount of force normal
to the wall surface that is required to counter any force pushing into the
wall. That equal-and-opposite force is exactly what is captured by Lagrange
multipliers, where the very stiff elastic response is captured by the barrier
or penalty formulation, with the parameter µ representing the compliance of
the barrier (inverse stiffness).

The weakness of a penalty or barrier approach is two-fold: if µ is far
from zero, we have a thick and spongy barrier (a poor approximation to
the infinitely rigid case); whereas if µ is close to zero, we have a nearly-
rigid barrier, but the Hessian of the augmented barrier function becomes
very ill-conditioned, scaling like µ−1. In contrast, with a Lagrange multiplier
formulation, we have a perfect barrier and no problems with ill-conditioning,
but at the cost of having to explicitly determine whether the optimum is at
one or more of the constraint surfaces, and also what “contact forces” are
needed to balance the negative gradient of φ that pushes into the barrier.
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Several modern algorithmic approaches, such as augmented Lagrangian
and interior point methods, get the best of both perspectives by combining
a penalty or barrier term with a Lagrange multiplier computation.

5 An interior point strategy
Having touched on the relation between Lagrange multipliers and logarithmic
barriers, let us now turn to an interior point method for quadratic program-
ming. We start by rewriting the constraints ATx−b ≤ 0 in terms of an extra
set of slack variables:

y = b− ATx ≥ 0.

With this definition, we write the KKT conditions as

Hx− d+ Aλ = 0

ATx− b+ y = 0

λiyi = 0

yi, λi ≥ 0.

Interior point methods solve this system by applying Newton-like iterations
to the three equations, while at the same time ensuring that the inequalities
are enforced strictly at every step (that is, every step is interior to the feasible
domain).

Compare this to the critical point conditions for the barrier problem

minimize 1

2
xTHx− xTd− γ

m∑
j=1

log(yj)

for some small value of the barrier parameter γ, where we note that

∇x

(
−γ

n∑
j=1

log(yj)

)
= Aλ̂, λ̂j =

γ

yj

and we can rewrite this system as

Hx− d+ Aλ̂ = 0

ATx− b+ y = 0

yiλ̂i − γ = 0.
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Figure 3: Example constrained quadratic problem with central path.

Typical interior point methods take guarded Newton steps (or Newton-like
steps) on this system of equations, which can be regarded as a relaxation of
the KKT conditions or as a critical point of a barrier formulation. The path
traced out as µ varies is known as the “central path.”

We plot the central path taken for our test problem in Figure 3.

function barrier_qp(x0, H, d, A, b, γ; nsteps=20, ptol=1e-8)

n = length(d)

m = length(b)

σ = 0.5

x = copy(x0)

y = b-A'*x

λ = γ./y

F(x, y, λ) = [H*x - d + A*λ;

A'*x - b + y;

y.*λ .- γ]

J(x, y, λ) = [H zeros(n,m) A;
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A' I zeros(m,m);

zeros(m,n) diagm(λ) diagm(y)]

α = 1.0

p = -(J(x, y, λ) \ F(x, y, λ))

for k = 1:nsteps

xnew = x + α*p[1:n]

if all(A'*xnew-b .<= 0.0)

x = xnew

y += α*p[n+1:n+m]

λ += α*p[n+m+1:end]

if α == 1.0 && norm(p) < ptol

return x, λ

end

α = 1.0

p = -(J(x, y, λ) \ F(x, y, λ))

else

α /= 2.0

end

end

error("Did not converge in $nsteps steps")

end

The parameter γ is adjusted dynamically during the solve, and is usu-
ally written as γ = σµ where σ ∈ [0, 1] is the centering parameters and
µ = yTλ/m is the complimentarity measure, which should go to zero as we
approach a problem solution. Getting all the details right is somewhat com-
plicated, though, and we recommend using a package written by someone
with some expertise.

Interior point methods avoid the problem of having to do a combinatorial
search to figure out the correct active set. At the same time, active set
methods may be more efficient for problems where we have a good initial
guess at the active set. Neither approach is universally preferable. Indeed,
it is possible to take a hybrid approach where an interior point method (or
something similar) is used to estimate which constraints are actually active,
and then an active set method serves to “clean up” the solution.
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