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1 Computing with constraints
Recall that our basic problem is
minimize ¢(x) s.t. © € Q
where the feasible set €2 is defined by equality and inequality conditions
Q={zeR":¢(x)=0,i€ & and ¢(r) <0,i € Z}.

In the last lecture, we described three different ways to formulate con-
strained optimization problem that allow us to build on techniques we pre-
viously explored from unconstrained optimization and equation solving:

1. Constraint elimination (for equality constraints): Find a parameter-
ization g : R"™™ —  formulations and minimize ¢(g(y)) without
constraints. This requires that the constraints be simple (e.g. affine
equality constraints).

2. Barriers and penalties: Add a term to the objective function depend-
ing on some parameter p. This term penalizes x values that violate
the constraint (penalty methods) or that come close to 02 from the
inside (barrier methods). As p — 0, the unconstrained minimum of
the modified problems converges to the constrained minimum of the
original.

3. Lagrange multipliers: Add new variables (multipliers) corresponding to
“forces” needed to enforce the constraints. The KKT conditions are a
set of nonlinear equations in the original unknowns and the multipliers
that characterize constrained stationary points.

Our goal now is to sketch how modern constrained optimization algo-
rithms incorporate these different ways of looking at the problem. A full
treatment is well beyond the scope of the class, but we hope to give you at
least the keywords you will need should you encounter them in a textbook,
paper, or a cocktail party. Ideally, knowing something about what happens
in the algorithms will also help you think about which of various equivalent
formulations of an optimization problem will be more (or less) friendly to
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solvers. The plan is to first give a “lay of the land” of different families of
algorithms, then to give a more detailed treatment with the running example
of linearly constrained quadratic programs.

For more details, there are some excellent textbooks in the field; some
texts that I really like from my own shelf include:

o Numerical Optimization, Nocedal and Wright
e Practical Optimization, Gill, Murray, and Wright
e Nonlinear Programming, Bertsekas

2 Lay of the Land

As we mentioned before, problems with inequality constraints tend to be more
difficult than problems with equality constraints alone, because it involves the
combinatorial subproblem of figuring out which constraints are active (a con-
straint ¢;(x) < 0 is active if ¢;(x) = 0 at the optimum). Once we have figured
out the set of active constraints, we can reduce an inequality-constrained
problem to an equality-constrained problem. Hence, the purely equality-
constrained case is an important subproblem for inequality-constrained op-
timizers, as well as a useful problem class in its own right.

For problems with only equality constraints, there are several standard
options:

o Null space methods deal with linear equality constraints by reducing to
an unconstrained problem in a lower-dimensional space.

o Projected gradient methods deal with simple equality constraints by
combining a (scaled) gradient step and a projection onto a constraint
set.

o Penalty methods approximately solve an equality-constrained problem
through an unconstrained problem with an extra term that penalizes
proposed soutions that violate the constraints. That is, we use some
constrained minimizer to solve

1
minimize ¢(x) + — Z ci(x)?
ic€
As pp — 0, the minimizers to these approximate problems approach the

true minimizer, but the Hessians that we encounter along the way be-
come increasingly ill-conditioned (with condition number proportional

to u™h).


https://link.springer.com/book/10.1007/978-0-387-40065-5
https://doi.org/10.1137/1.9781611975604
http://www.athenasc.com/nonlinbook.html
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o KKT solvers directly tackle the first-order optimality conditions (the
KKT conditions), simultaneously computing the constrained minimizer
and the associated Lagrange multipliers.

o Augmented Lagrangian methods combine the advantages of penalty
methods and the advantages of the penalty formulation. In an aug-
mented Lagrangian solver, one finds critical points for the augmented
Lagrangian

Ll him) = 6(2) + = 3 ca(@)? + Me(w)

€€

by alternately adjusting the penalty parameter i and the Lagrange
multipliers.

In the inequality-constrained case, we have

» Active set methods solve (or approximately solve) a sequence of equality-
constrained subproblems, shuffling constraints into and out of the pro-
posed working set along the way. These methods are particularly at-
tractive when one has a good initial estimate of the active set.

o Projected gradient methods deal with simple inequality constraints by
combining a (scaled) gradient step and a projection onto a constraint
set.

o Barrier methods and penalty methods add a term to the objective func-
tion in order to penalize constraint violations or near-violations; as in
the equality-constrained case, a parameter i governs a tradeoff between
solution quality and conditioning of the Hessian matrix.

o Interior point methods solve a sequence of barrier subproblems using a
continuation strategy, where the barrier or penalty parameter pu is the
continuation parameter. This is one of the most popular modern solver
strategies, though active set methods may show better performance
when one “warm starts” with a good initial guess for the solution and
the active set of constraints.

As with augmented Lagrangian strategies in the equality-constrained
case, state-of-the art strategies for inequality-constrained problems often
combine approaches, using continuation with respect to a barrier parame-
ters as a method of determining the active set of constraints in order to
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get to an equality-constrained subproblem with a good initial guess for the
solution and the Lagrange multipliers.

The sequential quadratic programming (SQP) approach for nonlinear op-
timization solves a sequence of linearly-constrained quadratic optimization
problems based on Taylor expansion of the objective and constraints about
each iterate. This generalizes simple Newton iteration for unconstrained
optimization, which similarly solves a sequence of quadratic optimization
problems based on Taylor expansion of the objective. Linearly-constrained
quadratic programming problems are hence an important subproblem in SQP
solvers, as well as being an important problem class in their own right.

3 Quadratic programs with equality constraints

We begin with a simple case of a quadratic objective and linear equality
constraints:

1
o(z) = §xTHas —2'd

clr) = ATz —b =0,

where H € R™" is symmetric and positive definite on the null space of AT
(it may be indefinite or singular overall), A € R™*™ is full rank with m < n,
and b € R™. Not only are such problems useful in their own right, solvers
for these problems are also helpful building blocks for more sophisticated
problems — just as minimizing an unconstrained quadratic can be seen as
the starting point for Newton’s method for unconstrained optimization.

begin
# Set up a test problem for linearly-constrained QP (2D so that we can plot)
H=1T[4.0 1.0 ;
1.0 4.0 ]
d=1[0.5; -2.0]
A=1T[1.0; 1.0]
b=1[1.0]
01l(xy) = xy'*H*xy/2 - xy'*d
cl(xy) = A'*x - b

end
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Figure 1: Example constrained quadratic problem.

3.1 Constraint elimination (linear constraints)

As discussed last time, we can write the space of solutions to the constraint
equations in terms of a (non-economy) QR decomposition of A:

oy

where ), is a basis for the null space of AT. The set of solutions satisfying
the constraints ATz = b is

Q={u+Qy:y€ ]R(”_m),u = QlRfTb};

here u is a particular solution to the problem. If we substitute this parame-
terization of €2 into the objective, we have the unconstrained problem

minimize ¢(u + Q2y).

While we can substitute directly to get a quadratic objective in terms of vy,
it is easier (and a good exercise in remembering the chain rule) to compute
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the stationary equations

9\ T
0=V,0(u+ Q) = (a—z) Vb (u + Qzy)

= Q5 (H(Qay +u) —d) = (QFHQ2)y — Q3 (d — Hu).

In general, even if A is sparse, ()2 may be dense, and so even if H is dense,
we find that QT HQ, is dense.

begin
# Solve the 2-by-2 problem via a null-space approach
F = qr(A)
Q=F.Q*1I
Q1 = Q[:,[1]1]
Q2 = Q[:,[2]]

u ns = Q1*(F.R"\b)

H22 = Q2'*H*Q2

r2 = Q2'*(d-H*u_ns)

y ns H22\r2

X_ns u_ns + Q2*y ns
end

The null-space approach is plotted in Figure 2.

Finding a particular solution and a null space basis via QR is great for
numerical stability, but it may not be ideal when the matrices involved are
sparse or structured. An alternative is to use a sparse LU factorization of
AT

PATQ = L [U1U,] .

where the U; submatrix is upper triangular. A particular solution is then

—17-1
x:Q[Ul [(,) Pb]

and the null space is spanned by

~U; U
QT|: 1] 2]'
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Figure 2: Minimization via null space method. White point is a feasible
solution.

This reformulation may be particularly attractive if A is large, sparse, and
close to square. Note that pivoting on rectangular constraint matrices needs
to be done carefully, e.g. using so-called rook pivoting strategies that maintain
numerical stability on full-rank matrices with rank-deficient submatrices.

3.2 Projected gradient and conjugate gradients

The projected gradient is a variant of gradient descent for constrained prob-
lem. One assumes that we have a projection operator P such that P(x) is
the closest point to = satisfying the constraint; the iteration is then

Lh41 = P (ZEk — angb(xk)) .

That is, we take an (unconstrained) gradient descent step, then project back
to satisfy the constraint. It’s an easy enough method to code, provided you
have the projection P.

For our linear equality constraints the projection can be computed by a
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least squares type of solve:

P(z) =z + A(ATA) "1 (b — ATx)
= (AT)Tb+ (I — AAN)z
= AN+ (I -z

Note that (AT)'h is the minimal norm solution to the constraint equation,
and the range space of I — Il = I — AAT is the null space of A7, so this is
similar to the picture we saw with the constraint elimination approach. And,
of course, the gradient in this case is just the residual r, = Hxy — d.

If we start with a point xq that is consistent with the constraints, then
each successive point remains on our linear constraint surface; in this case,
we can simplify the iteration to

L1 = T — ozk(] - H)Tk
This is a stationary iteration for the underdetermined consistent equation
(I —I)(Hzxy, — d) = 0.

Unfortunately, the projected gradient iteration may converge rather slowly.
A tempting thought is to use a scaled version of the gradient, but the naive
version of this iteration will in general converge to the wrong point unless
the projection operator is re-defined in terms of the distance associated with
the same scaling matrix.

If the relevant projection is available, a potentially more attractive route
for this problem is to write x = u + z for some particular solution u (as in
the null space approach) and then use a method like conjugate gradients on
the system

(I —INH({I —1)z= (I —1I)(d — Hu).

It turns out that the Krylov subspace generated by this iteration remains
consistent with the constraint, and so — somewhat surprisingly at first glance
— the method continues to work even though (I — IT)H (I — II) is singular.

let
resid proj(z) = z-Q1*(Ql'*z) # Function to apply I-Il
rhs = resid proj(d-H*u ns) # Compute (I-I1)(d-Hu)
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# Define a 2-by-2 symmetric linear map (I-[1)H(I-I1) from a matvec function
Afun = LinearMap((z)->resid proj(H*resid proj(z)), 2, issymmetric=true)

# Solve the singular system via CG
u ns + cg(Afun, rhs)
end

3.3 Penalties and conditioning

Now consider a penalty formulation of the same equality-constrained opti-
mization function, where the penalty is quadratic:

1
minimize ¢(x) + 2—||AT95 —b||2.
1

In fact, the augmented objective function is again quadratic, and the critical
point equations are

(H 4 p 'AAD) 2 = d + =t Ab.

If 1 is small enough and the equality-constrained quadratic program (QP)
has a minimum, then H + ' AAT is guaranteed to be positive definite. This
means we can solve via Cholesky; or (if the linear system is larger) we might
use conjugate gradients.

We can analyze this more readily by changing to the () basis from the
QR decomposition of A that we saw in the constraint elimination approach:

Q?HQI + ,u_l-RIP'g1 Q?HQ2 (QT(E) — Q?d + ,u_lRlb
Q3 HOQ: Q3 HQy Q3d

Taking a Schur complement, we have
(W 'RiRy + F)(Q{w) = ' Rib— g
where
F=Q{HQ ~ QI HQ:(Qy HQ>) ' Q3 HQ
9= —-QTHQy(Q3 HQ>)'Q3]d

As p — 0, the first row of equations is dominated by the x~! terms, and we
are left with
RiRT(QTz) — Rib — 0
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i.e. Q1QTx is converging to u = QR *b, the particular solution that we saw
in the case of constraint elimination. Plugging this behavior into the second
equation gives

(Q3 HQ2)(Q37) — Q3 (d — Hu) — 0,

i.e. QTx asymptotically behaves like y in the previous example. We need large
p to get good results if the constraints are ill-posed or if QI HQ, is close to
singular. But in general the condition number scales like O(p™!), and so
large values of i correspond to problems that are numerically unattractive,
as they may lead to large errors or (for iterative solvers) to slow convergence.

let
# Vary penalty to illustrate issues -- uniform improvement
# with smaller penalty until ill-conditioning kills us
function penalty err(u)
xhat = (H+A*A'/p)\ (d+A*b[1]/p)
norm(xhat-x_ns)
end
ps = 10.0.7-(1:14)
errs = penalty err. (us)
plot(us, errs, xscale=:1ogl0, yscale=:10gl0, legend=false)
end

We show the accuracy as a function of penalty parameter in Figure 3.
The plot shows the tradeoff between improving accuracy in exact arithmetic
and poor numerical behavior because of ill conditioning.

3.4 Lagrange multipliers and KKT systems

The KKT conditions for our equality-constrained problem say that the gra-
dient of
L(x,\) = ¢(z) + N'(ATx — b)

should be zero. In matrix form, the KKT system (saddle point system)

o] B =)

If A and H are well-conditioned, then so is this system, so there is no bad
numerical behavior. The system also retains whatever sparsity was present
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Figure 3: Accuracy as a function of penalty parameters.

in the original system matrices H and A. However, adding the Lagrange
multipliers not only increases the number of variables, but the extended
system lacks any positive definiteness that H may have.

When there are relatively few constraints and a fast solver with H is
available, an attractive way to solve this KKT system is the so-called range-
space method, which we recognize as just block Gaussian elimination:

ATH AN=ATH 'd - b
r=H'd— A)).

Rewritten as we might implement it, we have

Hzy=d

HY = A
(ATY)N = ATag — b
T =x9— Y\

The KKT system is closely related to the penalty formulation that we
saw in the previous subsection, in that if we use Gaussian elimination to



Bindel, Spring 2023 Numerical Analysis

remove the variable \ in

H A l||z] |d
AT —ul| | N |b]”
we have the Schur complement system
(H + p "AATY: = d 4 = Ab,

which is identical to the stationary point condition for the quadratically
penalized objective.
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