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1 Consider constraints
So far, we have considered unconstrained optimization problems. The con-
strained problem is

minimize φ(x) s.t. x ∈ Ω

where Ω ⊂ Rn. We usually define x in terms of a collection of constraint
equations and inequalities:

Ω = {x ∈ Rn : ci(x) = 0, i ∈ E and ci(x) ≤ 0, i ∈ I}.

We will suppose throughout our discussions that both φ and all the functions
c are differentiable.

If x∗ is a solution to the constrained minimization problem, we say con-
straint i ∈ I is active if ci(x) = 0. Often, the hard part of solving constrained
optimization problems is figuring out which constraints are active. From this
perspective, the equality constrained problem sits somewhere in difficulty
between the unconstrained problem and the general constrained problem.

Our treatment of constrained optimization is necessarily brief; but in the
next two lectures, I hope to lay out some of the big ideas. Today we will
focus on formulations; next time, algorithms.

2 Three recipes
Most methods for constrained optimization involve a reduction to an uncon-
strained problem (or subproblem). There are three ways such a reduction
might work:

• We might remove variables by eliminating constraints.
• We might keep the same number of variables and try to fold the con-

straints into the objective function.
• We might add variables to enforce constraints via the method of La-

grange multipliers.

These approaches are not mutually exclusive, and indeed one often alter-
nates between perspectives in modern optimization algorithms.
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3 Constraint elimination
The idea of constraint elimination is straightforward. Suppose we want to
solve an optimization problem with only equality constraints: ci(x) = 0 for
i ∈ E , where |E| < n and the constraints are independent – that is, the |E|×n
Jacobiam matrix ∂c/∂x has full row rank. Then we can think (locally) of x
satisfying the constraints in terms of an implicitly defined function x = g(y)
for y ∈ Rn−|E|. If this characterization can be made global, then we can solve
the unconstrained problem

minimize φ(g(y))

over all y ∈ Rn−|E|.
The difficulty with constraint elimination is that it requires that we find

a global parameterization of the solutions to the constraint equations. This
is usually difficult. An exception is when the constraints are linear :

c(x) = ATx− b

In this case, the feasible set Ω = {x : ATx − b = 0} can be written as
x ∈ {xp + z : z ∈ N (A)}, where xp is a particular solution and N (A) is the
null space of A. We can find both a particular solution and the null space
by doing a full QR decomposition on A:

A =
[
Q1 Q2

] [R1

0

]
.

Then solutions to the constraint equations have the form

x = A†b+Q2y = Q1R
−T
1 b+Q2y

where the first term is a particular solution and the second term gives a
vector in the null space.

For problems with linear equality constraints, constraint elimination has
some attractive properties. If there are many constraints, the problem after
constraint elimination may be much smaller. And if the original problem
was convex, then so is the reduced problem, and with a better-conditioned
Hessian matrix. The main drawback is that we may lose sparsity of the orig-
inal problem. Constraint elimination is also attractive for solving equality-
constrained subproblems in optimization algorithms for problems with linear
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inequality constraints, particularly if those constraints are simple (e.g. ele-
mentwise non-negativity of the solution vector).

For problems with more complicated equality constraints, constraint elim-
ination is hard. Moreover, it may not be worthwhile; in some cases, elim-
inating constraints results in problems that are smaller than the original
formulation, but are harder to solve.

The idea of constraint elimination is not limited to equality constraints:
one can also sometimes use an alternate parameterization to convert simple
inequality-constrained problems to unconstrained problems. For example, if
we want to solve a non-negative optimization problem (all xi ≥ 0), we might
write xi = y2i , or possibly xi = exp(yi) (though in this case we would need
to let yi → −∞ to exactly hit the constraint). But while they eliminate
constraints, these re-parameterizations can also destroy nice features of the
original problem (e.g. convexity). So while such transformations are a useful
part of the computational arsenal, they should be treated as one tool among
many, and not always as the best tool available.

3.1 Questions
Using constraint elimination, how would you solve the problem of minimizing
‖Ax− b‖2 subject to

∑
j xj = 1?

4 Penalties and barriers
Constraint elimination methods convert a constrained to an unconstrained
problem by changing the coordinate system in which the problem is posed.
Penalty and barrier methods accomplish the same reduction to the uncon-
strained case by changing the function.

As an example of a penalty method, consider the problem

minimize φ(x) +
1

2µ

∑
i∈E

ci(x)
2 +

1

2µ

∑
i∈I

max(ci(x), 0)2.

When the constraints are violated (ci > 0 for inequality constraints and ci 6= 0
for equality constraints), the extra terms (penalty terms) beyond the original
objective function are positive; and as µ → 0, those penalty terms come to
dominate the behavior outside the feasible region. Hence as we let µ → 0, the
solutions to the penalized problem approach solutions to the original (true)
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problem. At the same time, as µ → 0 we have much wilder derivatives of
φ, and the optimization problems become more and more problematic from
the perspective of conditioning and numerical stability. Penalty methods also
have the potentially undesirable property that if any constraints are active at
the true solution, the solutions to the penalty problem tend to converge from
outside the feasible region. This poses a significant problem if, for example,
the original objective function φ is undefined outside the feasible region.

As an example of a barrier method, consider the purely inequality con-
strained case, and approximate the original constrained problem by the un-
constrained problem

minimize φ(x)− µ
∑
i∈I

log(−ci(x)).

As ci(x) approaches zero from below, the barrier term −µ log(−ci(x)) grows
rapidly; but at any fixed x in the interior of the domain, the barrier goes
to zero as µ goes to zero. Hence, as µ → 0 through positive values, the
solution to the barrier problem approaches the solution to the true prob-
lem through a sequence of feasible points (i.e. approximate solutions that
satisfy the constraints). Though the feasibility of the approximations is an
advantage over penalty based formulations, interior formulations share with
penalty formulations the disadvantage that the solutions for µ > 0 lie at
points with increasingly large derivatives (and bad conditioning) if the true
solution has active constraints.

There are exact penalty formulations for which the solution to the penal-
ized problem is an exact solution for the original problem. Suppose we have
an inequality constrained problem in which the feasible region is closed and
bounded, each constraint ci has continuous derivatives, and ∇ci(x) 6= 0 at
any boundary point x where constraint i is active. Then the solution to the
problem

minimize φ(x) +
1

µ

∑
i

max(ci(x), 0)

is exactly the solution to the original constrained optimization problem for
some µ > 0. In this case, we used a nondifferentiable exact penalty, but there
are also exact differentiable penalties.
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4.1 Questions
How might you approximate the problem of minimizing ‖Ax − b‖2 subject
to

∑
j xj = 1 via a penalty formulation?

5 Lagrange multipliers
Picture a function φ : Rn → R; if you’d like to be concrete, let n = 2. Absent
a computer, we might optimize of φ by the physical experiment of dropping
a tiny ball onto the surface and watching it roll downhill (in the steepest
descent direction) until it reaches the minimum. If we wanted to solve a
constrained minimization problem, we could build a great wall between the
feasible and the infeasible region. A ball rolling into the wall would still
roll freely in directions tangent to the wall (or away from the wall) if those
directions were downhill; at a constrained miminizer, the force pulling the
ball downhill would be perfectly balanced against an opposing force pushing
into the feasible region in the direction of the normal to the wall. If the
feasible region is {x : c(x) ≤ 0}, the normal direction pointing inward at a
boundary point x∗ s.t. c(x∗) = 0 is proportional to −∇c(x∗). Hence, if x∗
is a constrained minimum, we expect the sum of the “rolling downhill” force
(−∇φ) and something proportional to −∇c(x∗) to be zero:

−∇φ(x∗)− µ∇c(x∗) = 0.

The Lagrange multiplier µ in this picture represents the magnitude of the
restoring force from the wall balancing the tendency to roll downhill.

More abstractly, and more generally, suppose that we have a mix of equal-
ity and inequality constraints. We define the Lagrangian

L(x, λ, µ) = φ(x) +
∑
i∈E

λici(x) +
∑
i∈I

µici(x).

The Karush-Kuhn-Tucker (KKT) conditions for x∗ to be a constrained min-
imizer are

∇xL(x∗) = 0

ci(x∗) = 0, i ∈ E equality constraints
ci(x∗) ≤ 0, i ∈ I inequality constraints

µi ≥ 0, i ∈ I non-negativity of multipliers
ci(x∗)µi = 0, i ∈ I complementary slackness
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where the (negative of) the “total force” at x∗ is

∇xL(x∗) = ∇φ(x∗) +
∑
i∈E

λi∇ci(x∗) +
∑
i∈I

µi∇ci(x∗).

The complementary slackness condition corresponds to the idea that a mul-
tiplier should be nonzero only if the corresponding constraint is active (a
“restoring force” is only present if our test ball is pushed into a wall).

Like the critical point equation in the unconstrained case, the KKT con-
ditions define a set of (necessary but not sufficient) nonlinear algebraic equa-
tions that must be satisfied at a minimizer. Because of the multipliers, we
have more variables than were present in the original problem. However, the
Jacobian matrix (KKT matrix)

J =

[
HL(x∗) ∇c
(∇c)T 0

]
has a saddle point structure even when Hφ(x∗) is positive definite. Also,
unlike the penalty and barrier approaches described before, the Lagrange
multiplier approach requires that we figure out which multipliers are active
or not — an approach that seems to lead to a combinatorial search in the
worst case.

5.0.1 Questions

How would you solve the problem of minimizing ‖Ax−b‖2 subject to
∑

j xj =
1 via the method of Lagrange multipliers?
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