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1 Pacing the Path
So far, we have focused on nonlinear equations (f : Rn → Rn) and opti-
mization problems (φ : Rn → R). Often, though, nonlinear equations and
optimization problems depend on some extra parameter. For example:

• In fitting problems, we care about the solution as a function of a reg-
ularization parameter.

• In population biology, we care about equilibrium population levels as
a function of various parameters: birth rates, death rates, initial pop-
ulation sizes, etc.

• In mechanics, we care about the deformation of a structure as a function
of load.

• In chemical kinetics, we care about equilibrium chemical concentrations
as a function of temperature.

• In engineering problems involving a tradeoff between two parameters
(e.g. mass and stiffness), we care about the optimal setting of one
parameter given a fixed value of the other.

• In stochastic problems, we may care about the behavior as a func-
tion of the variance of the noise term, or perhaps as a function of an
autocorrelation time.

In each case, a solution path is an implicit function of the extra parameter.
For these types of problems, continuation strategies are often a good choice.
The basic picture in a continuation strategy for solutions of an equation
F (x(s), s) = 0 where F : Rn × R → Rn starting from some easily computed
solution x(s0) is:

• Given x(sj), choose a new s′ = sj +∆s.
• Predict x(s′) based on the behavior at s. Two common predictors are

– Trivial: Guess x(s′) ≈ x(sj).
– Euler: Guess x(s′) ≈ x(sj)− ∂F

∂x
(xj, sj)

−1 ∂F
∂s
(xj, sj).

• Correct by taking a few steps of Newton iteration.

https://en.wikipedia.org/wiki/Implicit_function_theorem
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• Either accept sj+1 = s′ and a corresponding x(sj) if the Newton itera-
tion converged, or try again with a smaller ∆s. If the Newton iteration
converges very quickly, we may increase ∆s.

Continuation is also natural if we really do care about a problem with
no free parameters, but we lack a good initial guess with which to start an
iterative method to solve the problem. In that case, a reasonable strategy is
often to introduce a parameter s such that the equations at s = 0 are easy
and the equations at s = 1 are the ones that we would like to solve. Such
a constructed path in problem space is sometimes called a homotopy. In
many cases, one can show that solutions are continuous (though not neces-
sarily differentiable) functions of the homotopy parameter, so that following
a homotopy path with sufficient care can provide all solutions even for hard
nonlinear problems. For this reason, homotopy methods are particularly ef-
fective for solving systems of polynomial equations. Another very popular
family of homotopy methods are the interior point methods for constrained
optimization problems, which we will touch on briefly next week.

2 Tough to Trace
As a starting example, let’s consider a variation on the equation from one of
our first nonlinear systems lectures, a discretization of the thermal blowup
equation

d2u

dx2
+ exp(γu) = 0

subject to u(0) = u(1) = 0. As before, we approximate the derivative with a
mesh to get a system of equations of the form

h−2 (uj−1 − 2uj + uj+1) + exp(γuj) = 0

where uj is the approximate solution at a mesh point xj = jh with h =
1/(N + 1). The boundary conditions are u0 = uN+1 = 0, and the difference
equations govern the behavior on the interior. Compared to the last time we
saw this system, though, we have introduced a new feature: the rate constant
γ.

function autocatalytic(v, γ)

N = length(v)



Bindel, Spring 2023 Numerical Analysis

fv = exp.(γ*v)

fv -= 2*(N+1)^2*v

fv[1:N-1] += (N+1)^2*v[2:N ]

fv[2:N ] += (N+1)^2*v[1:N-1]

fv

end

function Jautocatalytic(v, γ)

N = length(v)

SymTridiagonal(γ*exp.(γ*v) .- 2*(N+1)^2, (N+1)^2 * ones(N-1))

end

function dγ_autocatalytic(v, γ)

v .* exp.(γ*v)

end

When γ is equal to zero, the differential equation becomes

d2u

dx2
+ 1 = 0,

which has the solution (subject to boundary conditions)

u(x; 0) =
1

2
x(1− x).

For larger values of γ, things become more interesting. Based on physical
reasoning, we expect the solutions to get more unstable (and harder) as γ
grows. We therefore consider a strategy in which we incrementally increase
γ, at each point using a trivial predictor (the solution for the previous γ)
as an initial guess for a Newton iteration. If the Newton iteration does not
converge in a few steps, we try again with a smaller step, stopping once the
step size has become too small.

As we get just past γ = 3.5, the solution becomes more and more sensitive
to small changes in γ, and we have to take shorter steps in order to get
convergence. This is reflective of an interesting physical phenomenon known
as a bifurcation. Mathematically, what we see is the effect of the Jacobian
becoming closer and closer to singular at the solution.

We show both the center tempertaure and the largest eigenvalue as a
function of γ in Figure 1.
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Figure 1: Diagram for center temperature vs γ from continuation in γ (left)
and max eigenvalue vs γ (right).

let

xall = range(0.0, 1.0, length=200)

xint = xall[2:199]

# Keep a record of parameters, step sizes, and center temperatures

γs = []

Δγs = []

vcenter = []

λs = []

# Current solution + storage for Newton iterates

v = xint.*(1.0 .- xint)/2

vnew = copy(v)

γ = 0.0

Δγ = 0.1

while Δγ >= 1e-6 && γ < 4.0
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# Run Newton iteration

converged = false

vnew[:] = v

for k = 1:10

fv = autocatalytic(vnew, γ)

vnew[:] -= Jautocatalytic(vnew, γ)\fv

if norm(fv) < 1e-8

converged = true

break

end

end

# Record the step if converged; otherwise, cut the

# step size and try again

if converged

v[:] = vnew

push!(γs, γ)

push!(Δγs, Δγ)

push!(vcenter, v[99])

push!(λs, maximum(eigvals(Jautocatalytic(v, γ))))

γ += Δγ

else

γ -= Δγ

Δγ /= 2

γ += Δγ

end

end

p1 = plot(γs, vcenter,

xlabel="\$\\gamma\$", ylabel="\$v_{\\mathrm{center}}\$",

legend=false)

p2 = plot(γs, λs,

xlabel="\$\\gamma\$", ylabel="\$\\lambda_{\\max}\$",

legend=false)

plot(p1, p2, layout=(1, 2))

end
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3 Picking parameters
In the previous section, we saw that continuation allowed us to march γ
right up to some critical parameter, but not beyond. We can get a clearer
picture of what is going on — and better solver stability — if we look at
the same problem as a function of a different parameter In particular, let
us consider controlling the midpoint value µ, and letting both v and γ be
implicit functions of the midpoint value. That is, we have the equations

F (v, γ;µ) =

[
−h−2TNv + exp(γv)

eTmidv − µ

]
= 0

with the Jacobian matrix (with respect to v and γ)

∂F

∂(v, γ)
=

[
−h2Tn + γ diag(exp(γv)) v � exp(γv)

eTmid 0

]
where we use a � b to denote elementwise multiplication. We use the same
continuation process with a trivial predictor to trace out the behavior of the
midpoint as a function of γ.

let

xall = range(0.0, 1.0, length=200)

xint = xall[2:199]

# Keep a record of parameters, step sizes, and center temperatures

γs = []

vcenter = []

# Initial point

v = xint.*(1.0 .- xint)/2

μ = 0.125

γ = 0.0

emid = zeros(198)

emid[99] = 1.0

for μ in range(0.125, 2.125, length=200)

# Run Newton iteration
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converged = false

vγ = [v; γ]

for k = 1:10

fvγ = [autocatalytic(vγ[1:end-1], vγ[end]); vγ[99]-μ]

J11 = Jautocatalytic(vγ[1:end-1], vγ[end])

dγf = dγ_autocatalytic(vγ[1:end-1], vγ[end])

Jvγ = [J11 dγf;

emid' 0.0]

vγ[:] -= Jvγ\fvγ

if norm(fvγ) < 1e-8

converged = true

break

end

end

# Record

if converged

v[:] = vγ[1:end-1]

γ = vγ[end]

push!(γs, γ)

push!(vcenter, v[99])

else

println("Nonconvergence at $μ = μ")

break

end

end

# Say where we stopped and plot some diagnostics

plot(γs, vcenter, xlabel="\$\\gamma\$", ylabel="\$v_{\\mathrm{center}}\$",

legend=false)

end

The result of this code is shown in Figure 2. This picture makes the
behavior of the solution close to γ = 3.5 a little more clear. The phenomenon
shown is called a fold bifurcation. Physically, we have that for γ . 3.5, there
are two distinct solutions (one stable and one unstable); as γ increases, these
two solutions approach each other until at some critical γ value they “meet.”
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Figure 2: Diagram for center temperature vs γ from continuation in center
temperature.

Beyond the critical value, there is no solution to the equations.

4 Pseudoarclength Ideas
What if we think we might run into a fold bifurcation, but do not know a
good alternate parameter for continuation? A natural idea is to parameterize
the solution curve (e.g. (v(γ), γ)) in terms of an arclength parameter. In
practice, we do not care too much about exactly controlling arclength; it is
just a mechanism to avoid picking parameters. Therefore, we pursue pseudo-
arclength strategies as an alternative.

For the simplest pseudo-arclength continuation strategy, consider a func-
tion F : Rn+1 → Rn. Assuming the Jacobian has maximal rank, we expect
there to be a solution curve x : R → Rn such that F (x(s)) = 0. The null
vector of the Jacobian F ′ is tangent to x, and so we can use this to predict
a new point. The basic procedure to get a new point on the curve starting
from xj is then:

• Consider the Jacobian F ′(xj) ∈ Rn×(n+1) and compute a null vector
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v (a simple approach is to compute a QR factorization). Choose a
tangent vector tj ∝ v; usually we normalize so that tj−1 · tj > 0.

• Move a short distance along the tangent direction (Euler predictor), or
otherwise predict a new point.

• Correct back to the curve. One approach is the iteration

yk+1 = yk − F ′(yk)†F (yk)

where F ′(yk)† ∈ R(n+1)×n is the pseudoinverse of the Jacobian. This is
equivalent to solving the problem

minimize ‖pk‖2 s.t. F ′(yk)pk = −F (yk).

• If the iteration curves and the new point is OK, accept the point and
move on. Otherwise, reject the point and try again with a shorter step
in the tangent direction.

Depending on what linear algebra tools are available to you, you may
choose different strategies to compute the tangent vector or correct back to
the curve. Indeed, some peculiarities in the Julia sparse rectangular solvers
leads us to prefer something different.

let

xall = range(0.0, 1.0, length=200)

xint = xall[2:199]

# Keep a record of parameters, step sizes, and center temperatures

γs = []

vcenter = []

# Initial point

v = xint.*(1.0 .- xint)/2

γ = 0.0

μ = 0.125

# Indicator for last column (used for tangent vec)

eγ = zeros(199)

eγ[end] = 1
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# Take an initial vector to establish direction to move on curve

tprev = zeros(199)

tprev[99] = 1

while v[99] <= 2.0

# Compute a tangent vector in the same direction as before

J = [Jautocatalytic(v, γ) dγ_autocatalytic(v, γ) ; tprev' ]

t = J\eγ

t /= norm(t)

tprev[:] = t

# Take Euler predictor step

h = 0.1

vγ = [v; γ] + h*t

# Correct back to curve

converged = false

for k = 1:10

fvγ = autocatalytic(vγ[1:end-1], vγ[end])

J11 = Jautocatalytic(vγ[1:end-1], vγ[end])

dγf = dγ_autocatalytic(vγ[1:end-1], vγ[end])

Jvγ = [J11 dγf; t']

vγ[:] -= Jvγ\[fvγ; 0]

if norm(fvγ) < 1e-8

converged = true

break

end

end

# Record

if converged

v[:] = vγ[1:end-1]

γ = vγ[end]

push!(γs, γ)

push!(vcenter, v[99])

else

println("Nonconvergence in corrector")



Bindel, Spring 2023 Numerical Analysis

Figure 3: Diagram for center temperature vs γ from pseudo-arclength con-
tinuation.

break

end

end

plot(γs, vcenter, xlabel="\$\\gamma\$", ylabel="\$v_{\\mathrm{center}}\$",

legend=false)

end

The result of this code is shown in Figure 3.

5 And Points Beyond
There is a large and fascinating literature on numerical continuation meth-
ods and on the numerical analysis of implicitly defined functions. Beyond the
predictor-corrector methods that we have described, there are various other
methods that address similar problems: piecewise linear (simplex) continua-
tion, pseudo-transient continuation, and so forth. We can combine continu-
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ation ideas with all the other ideas that we have described in the course; for
example, one can do clever things with Broyden updates as one walks along
the curve. We can also apply step control techniques that some of you may
have learned in a class like CS 4210 in the context of methods for solving
ordinary differential equations.

A little knowledge of continuation methods can take you a long way, but
if you would like to know more, I recommend Introduction to Numerical
Continuation Methods by Allgower and Georg.

https://doi.org/10.1137/1.9780898719154
https://doi.org/10.1137/1.9780898719154
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