
Bindel, Spring 2023 Numerical Analysis

2023-04-19

1 Levenberg-Marquardt
Recall from our discussion of nonlinear least squares the Levenberg-Marquardt
iteration where we solve a regularized least squares problem to compute the
step; that is,

pk = argminp

1

2
‖f(xk) + f ′(xk)p‖2 +

µ

2
‖Dp‖2.

The scaling matrix D may be an identity matrix (per Levenberg), or we may
choose D2 = diag(f ′(xk)

Tf ′(xk)) (as suggested by Marquardt).
For λ = 0, the Levenberg-Marquardt step is the same as a Gauss-Newton

step. As λ becomes large, though, we have the (scaled) gradient step

pk = − 1

µ
D−2f ′(xk)

Tf(xk) +O(µ−2).

Unlike Gauss-Newton with line search, changing the parameter µ affects not
only the distance we move, but also the direction.

In order to get both ensure global convergence (under sufficient hypothe-
ses on f , as usual) and to ensure that convergence is not too slow, a variety of
methods have been proposed that adjust λ dynamically. To judge whether µ
has been chosen too aggressively or conservatively, we monitor the gain ratio,
or the ratio of actual reduction in the objective to the reduction predicted
by the (Gauss-Newton) model:

ρ =
‖f(xk)‖2 − ‖f(xk + pk)‖2

‖f(xk)‖2 − ‖f(xk) + f ′(xk)pk‖2
.

If the step decreases the function value enough (ρ is sufficiently positive), then
we accept the step; otherwise, we reject it. For the next step (or the next
attempt), we may increase or decrease the damping parameter µ depending
on whether ρ is close to one or far from one.

function levenberg_marquardt(x0, f, J; nsteps=100, rtol=1e-8, τ=1e-3,

monitor=(x, rnorm, μ))

Bindel, Spring 2023 Numerical Analysis

Evaluate everything at the initial point

x = copy(x0)

Jx = J(x)

fx = f(x)

Hx = Jx'*Jx

μ = τ * maximum(diag(Hx)) # Default damping parameter

ν = 2.0 # Step re-scaling parameter (default value)

for k = 1:nsteps

Check for convergence

g = Jx'*fx

rnorm = norm(Jx'*fx)

monitor(x, rnorm, μ)

if rnorm < rtol

return x

end

Compute a proposed step and re-evaluate residual vector

p = (Hx + μ*I)\(-g)

xnew = x + p

fxnew = f(xnew)

Compute the gain ratio

ρ = (norm(fx)^2 - norm(fxnew)^2) / (norm(fx)^2 - norm(fx+Jx*p)^2)

if ρ > 0 # Success!

Accept new point

x = xnew

fx = fxnew

Jx = J(x)

Hx = Jx'*Jx

Reset re-scaling parameter, update damping

μ *= max(1.0/3.0, 1.0-2.0*(ρ-1.0)^3)

ν = 2.0

Bindel, Spring 2023 Numerical Analysis

else

Rescale damping

μ *= ν

ν *= 2.0

end

end

error("Did not converge in $nsteps iterations")

end

2 Consider constraints
There is another way to think of the Levenberg-Marquardt step. Consider
the minimization problem

pk = argminp

1

2
‖f(x) + f ′(x)p‖2 s.t. ‖Dp‖ ≤ ∆.

There are two possible cases in this problem:

1. ‖f ′(xk)
†f(x)‖ < ∆, and the solution is the Gauss-Newton step

2. Otherwise the Gauss-Newton step is too big, and we have to enforce
the constraint ‖Dp‖ = ∆. For convenience, we rewrite this constraint
as (‖Dp‖2 −∆2)/2 = 0.

We define the Langrangian for the optimization problem to be

L(p, λ) =
1

2
‖f(xk) + f ′(xk)p‖2 +

λ

2

(
‖Dp‖2 −∆2

)
.

The solution to the constrained optimization problem satisfies the critical
point equation ∂L/∂p = 0 and ∂L/∂λ = 0. The equation ∂L/∂p = 0 is the
same as the Tikhonov-regularized least squares problem with regularization
parameter λ. Whether λ is treated as a regularization parameter or a multi-
plier that enforces a constraint is thus simply a matter of perspective. Hence,
we can consider the Levenberg-Marquardt method as minimizing the model
‖f(xk) + f(xk)p‖ subject to the constraint ‖Dp‖ ≤ ∆, where a larger or

Bindel, Spring 2023 Numerical Analysis

smaller value of λ corresponds to a smaller or larger value of ∆. We think of
the region ‖Dp‖ ≤ ∆ as the region where the Gauss-Newton model provides
good guidance for optimization; that is, it is a region where we trust the
model.

3 Trust regions
A trust region method for mininizing φ involves a model µ(p) that is supposed
to approximate the decrease φ(xk + p)− φ(xk) associated with taking a step
p; and a trust region, often chosen to be a sphere ‖p‖ ≤ ∆, where we believe
the model to provide reasonable predictions.

The simplest model µ(p) is linear, but the more interesting (and common)
case involves a quadratic model

µ(p) = gTp+
1

2
pTHp.

Minimizing a quadratic µ(p) subject to the constraint ‖µ(p)‖ ≤ ∆ is not
easy. We turn to this trust region subproblem next.

Compared to a line search strategy, trust region methods have the ad-
vantage that we adapt not just the step length but also the direction of
the search. Consequently, trust region methods often exhibit more robust
convergence, though both line search and trust region approaches exhibit
good global convergence properties, and both approaches lead to eventual
superlinear convergence when paired with a Newton model (i.e. a quadratic
approximation centered at xk) or a quasi-Newton method such as BFGS.

3.1 The trust region subproblem
The problem

minimize gTp+
1

2
pTHp s.t. ‖p‖ ≤ ∆

is the trust region subproblem. Sometimes people use the more general con-
straint

pTMp ≤ ∆2

for some positive definite M , but we will stick to the usual 2-norm. There
are two possible solutions:

Bindel, Spring 2023 Numerical Analysis

1. If H is positive definite and ‖H−1g‖ ≤ ∆, then the solution is p =
−H−1g. This is the interior case.

2. If H is not positive definite or ‖H−1g‖ > ∆, then the solution iis p =
−(H + λI)−1g for some λ > 0 such that ‖p‖ = ∆. At the appropriate
λ, we have H + λI is positive semi-definite. This is the boundary case

Most of the effort is spent on the boundary case, which itself has two
subcases:

1. If H + λI is positive definite, then there is a unique solution to the
trust region subproblem.

2. If H + λI is singular, then there are multiple solutions to the trust
region subproblem, and we seen the problem with minimum norm.

The case when H + λI is singular (i.e. −λ is an eigenvalue of H) is
consistently known as the hard case in the literature.

3.2 Exact solves
The standard solver for the trust-region subproblem is due to Moré and
Sorensen, and involves a safeguarded Newton iteration for finding the relevant
λ, with careful treatment of the hard case. A number of authors have also
adapted this approach to the large sparse case. However, I am particularly
fond of a method proposed by Gander, Golub, and Von Matt that recasts
the trust-region subproblem in terms of an eigenvalue problem. That paper
concluded that the eigenvalue formulation was numerically inferior to the
Moré-Sorensen approach, but a 2017 paper of Adachi, Iwata, Nakatsukasa,
and Takeda concluded that this was in part because the eigensolvers available
in 1989 were not as good as the solvers currently available. The Adachi et
al paper provides a nice discussion of the formulation, including the hard
case, which results in a mercifully brief code (which you are nonetheless not
required to digest). One of the nice things about this formulation is that it
adapts naturally to large-scale problems where H is sparse or data sparse,
though we will only worry about the dense case in our code.

function solve_tr(g, H, Δ)

n = length(g)

Check interior case

https://doi.org/10.1137/0904038
https://doi.org/10.1137/0904038
https://doi.org/10.1007/978-3-642-75536-1_57
https://doi.org/10.1137/16M1058200
https://doi.org/10.1137/16M1058200

Bindel, Spring 2023 Numerical Analysis

try

F = cholesky(H)

p = -(F\g)

if norm(p) <= Δ

return p, false

end

catch e

Hit this case if Cholesky errors (not pos def)

end

Compute the relevant eigensolve

w = g/Δ

M = [H -I ;

-w*w' H]

λs, V = eigen(M)

The right most eigenvalue (always sorted to the end in Julia) is real,

and corresponds to the desired λ

λ = -real(λs[1])

v = real(V[:,1])

y2 = v[1:n]

y1 = v[n+1:end]

Check if we are in the hard case (to some tolerance)

gap = real(λs[2])-real(λs[1])

if norm(y1) <= 1e-8/sqrt(gap)

Hard case -- we punt a little and assume only one null vector

Compute min-norm solution plus a multiple of the null vector.

v = y2/norm(y2)

q = -(H+norm(H)/n^2*v*v')\g

return q + v*sqrt(Δ^2-q'*q), true

else

Standard case -- extract solution from eigenvector

return -sign(g'*y2) * Δ * y1/norm(y1), true

end

end

A useful picture is a plot of the step for various ∆ values for a sample

Bindel, Spring 2023 Numerical Analysis

Figure 1: Plot of trust region subproblem solve for varying ∆.

quadratic model (Figure 1).

3.3 Inexact solves
One of the main difficulties with the trust region approach is solving a con-
strained quadratic optimization as a subproblem. As with line search, the
thinking goes, the cost of doing an exact search is probably not worthwhile
— we would rather get a good-enough approximate solution and move on.

A popular inexact search approach is the dog leg method. The idea of
the dog leg method is to approximate the shape of the curve

p(∆) = argminp µ(p) s.t. ‖p‖ ≤ ∆

based on the observation that

• p(0) = 0.
• p′(0) ∝ −∇φ(xk).
• For large ∆, p(∆) = p∞ is the unconstrained minimizer of µ.

We thus approximate the ρ(∆) curve by a piecewise linear curve with

Bindel, Spring 2023 Numerical Analysis

• A line segment from 0 to −α∇φ(xk) where µ(−α∇φ(xk)) is mimimized.
• Another line segment from −α∇φ(xk) to p∞.

function dogleg_tr(g, H, Δ)

n = length(g)

Positive definite case (Cholesky succeeds)

try

F = cholesky(H)

p∞ = -(F\g)

Check for interior case

if norm(p∞) <= Δ

return p∞, false

end

Compute a Cauchy step (first part of the dog leg)

τ = (g'*g)/(g'*H*g)

pc = -τ*g

if norm(pc) >= Δ

return (Δ/norm(pc)) * pc, true

end

If the Cauchy step is interior, do the dog leg:

p = pc + η*(p∞-pc) s.t. norm(p) = Δ

This corresponds to solving the quadratic

pc'*pc + 2*η*pc'*(p∞-pc) + η^2*(p∞-pc)'*(p∞-pc) = Δ^2

#

a = (p∞-pc)'*(p∞-pc)

b = pc'*(p∞-pc)

c = pc'*pc - Δ^2

η = (-b + sqrt(b^2 - a*c))/a

return pc + η*(p∞-pc), true

catch e

Hit this case if Cholesky errors (not pos def)

end

Bindel, Spring 2023 Numerical Analysis

Figure 2: Plot of trust region subproblem dogleg approximation for varying
∆.

Compute a Cauchy step

τ = (g'*g)/(g'*H*g)

pc = -τ*g

if τ < 0.0 || norm(pc) >= Δ

return (Δ/norm(pc)) * pc, true

end

return -(Δ/norm(g)) * g, true

end

A plot illustrates what happens with the dogleg path as a function of ∆,
compared to the true trust region solution path: the dogleg is a piecewise
linear approximation to the true path (Figure 2).

A related approach is two-dimensional subspace minimization, which in-
volves a constrained miminization over the two-dimensional subspace spanned
by −∇φ(xk) and p∞.

The Steighaug method combines the trust region approach with a (lin-
ear) conjugate gradient solve on the quadratic model problem. The idea is
to trace out a polygonal path (as in the dog leg method) connecting the CG

Bindel, Spring 2023 Numerical Analysis

iterates, until that path intersects the trust region boundary. If the (approx-
imate) Hessian used by the model is indefinite, CG runs until it discovers the
indefiniteness, then plots a path toward where the model descends to −∞.
There are more recent variants which combine Newton, trust regions, and
Krylov subspaces in various clever ways; other than mentioning that they
exist, though, we leave this topic for the interested student to pursue in her
copious free time.

3.4 Adapting the trust region
At each step of the method, we (approximately) minimize the model within
the trust region to get a proposed step p, then check the gain ratio associated
with taking that step:

ρk =
φ(xk)− φ(xk + pk)

µ(0)− µ(pk)
.

Depending on whether the gain ratio, we adjust ∆; a strategy proposed in
Nocedal and Wright is:

• If ρk < 1/4, we were too aggressive; set ∆k+1 = ∆k/4.
• If ρk > 3/4 and ‖pk‖ = ∆k, we were too conservative; set ∆k+1 =

min(2∆k,∆max).
• Otherwise, leave ∆k+1 = ∆k.

We also use the gain ratio to decide whether to accept or reject the step.
For ρk > η for a fixed η ∈ [0, 1/4), we accept (xk+1 = xk + p); otherwise we
reject (xk+1 = xk).

function tr_newton(x0, ϕ, ∇ϕ, Hϕ; nsteps=100, rtol=1e-6, Δmax=Inf,

monitor=(x, rnorm, Δ)->nothing)

Compute an intial step and try trusting it

x = copy(x0)

ϕx = ϕ(x)

gx = ∇ϕ(x)

Hx = Hϕ(x)

p = -Hx\gx

Δ = 1.2 * norm(p)^2

Bindel, Spring 2023 Numerical Analysis

hit_constraint = false

for k = 1:nsteps

Compute gain ratio for new point and decide to accept or reject

xnew = x + p

ϕnew = ϕ(xnew)

μdiff = -(gx'*p + (p'*Hx*p)/2)

ρ = (ϕx - ϕnew)/μdiff

Adjust radius

if ρ < 0.25

Δ /= 4.0

elseif ρ > 0.75 && hit_constraint

Δ = min(2*Δ, Δmax)

end

Accept if enough gain (and check convergence)

if ρ > 0.1

x[:] = xnew

ϕx = ϕnew

gx = ∇ϕ(x)

monitor(x, norm(gx), Δ)

if norm(gx) < rtol

return x

end

Hx = Hϕ(x)

end

Otherwise, solve the trust region subproblem for new step

p, hit_constraint = solve_tr(gx, Hx, Δ)

end

return x

end

Bindel, Spring 2023 Numerical Analysis

Figure 3: Residual history for Rosenbrock banana example.

3.5 An illustrative computation
It is always useful to see how these things work on a problem we’ve already
looked at in another context. Let’s consider as an example the Rosenbrock
banana function.

begin

frosen(x) = 100*(x[2]-x[1]^2)^2 + (1-x[1])^2

grosen(x) = [400*x[1]*(x[1]^2-x[2]) + 2*(x[1]-1);

200*(x[2]-x[1]^2)]

Hrosen(x) = [400*(3*x[1]^2-x[2])+2 -400*x[1] ;

-400*x[1] 200]

end

Bindel, Spring 2023 Numerical Analysis

Figure 4: Step size history for Rosenbrock banana example.

Figure 5: Solver trajectory for Rosenbrock banana example.

	Levenberg-Marquardt
	Consider constraints
	Trust regions
	The trust region subproblem
	Exact solves
	Inexact solves
	Adapting the trust region
	An illustrative computation

