
Bindel, Spring 2023 Numerical Analysis

2023-04-12

1 Life beyond Newton
We have now seen a few iterations for solving nonlinear equations and opti-
mization problems from a good enough initial guess: Newton, scaled gradient
descent, and various fixed point iterations before the break; Gauss-Newton,
Levenberg-Marquardt, and IRLS at the start of this week. Despite the va-
riety of methods we consider, Newton’s method continues to play a central
role, largely because of its rapid convergence. But while the convergence of
Newton’s method is attractive, Newton steps may not be cheap. At each
step, we need to:

• Form the function and the Jacobian. This involves not only compu-
tational work, but also analytical work – someone needs to figure out
those derivatives!

• Solve a linear system with the Jacobian. This is no easier than any
other linear solve problem! Indeed, it may be rather expensive for
large systems, and factorization costs cannot (in general) be amortized
across Newton steps.

The Jacobian (or the Hessian if we are looking at optimization problems)
is the main source of difficulty. Now we consider several iterations that deal
with this difficulty in one way or the other.

2 A running example redux
It is always helpful to illustrate methods with an actual example. We will
continue to work with the example from before break of a nonlinear reaction-
diffusion equilibrium problem:

∂v

∂t
=

∂2v

∂x2
+ exp(v) = 0, v(0) = v(1) = 0

Discretizing on a mesh of points xi = i/(N + 1) with associated function
values vi, we have

fi(v) =
vi−1 − 2vi + vi+1

h2
+ exp(vi) =

[
−h−2TNv + exp(v)

]
i

Bindel, Spring 2023 Numerical Analysis

with h = (N+1)−1 and v0 = vN+1 = 0. In fact, we can write f(v) = −∇φ(v)
where

φ(v) =
1

2h2
vTTNv −

N∑
i=1

exp(vi)

=
n∑

i=0

1

2

(
vi+1 − vi

h

)2

−
N∑
i=1

exp(vi).

function ϕ_autocatalytic(v)

N = length(v)

C = 0.5*(N+1)^2

ϕ = C*v[1]^2 - exp(v[1])

for j = 1:N-1

ϕ += C*(v[j]-v[j+1])^2 - exp(v[j])

end

ϕ += C*v[N]^2 - exp(v[N])

return ϕ

end

function autocatalytic(v)

N = length(v)

fv = exp.(v)

fv -= 2*(N+1)^2*v

fv[1:N-1] += (N+1)^2*v[2:N]

fv[2:N] += (N+1)^2*v[1:N-1]

fv

end

function Jautocatalytic(v)

N = length(v)

SymTridiagonal(exp.(v) .- 2*(N+1)^2, (N+1)^2 * ones(N-1))

end

We plot φ(αq) against α in Figure 1.

begin

N = 100

xx = range(1, N, length=N)/(N+1)

Bindel, Spring 2023 Numerical Analysis

Figure 1: Plot of energy φ(αq) vs α for the blowup example.

q = xx.*(1.0 .- xx)

plot(range(0, 20, length=1001), (α) -> ϕ_autocatalytic(α*q),

xlabel="\$\\alpha\$", ylabel="\$\\phi(\\alpha q)\$",

legend=false)

end

2.1 Questions
Write a one-dimensional Newton method to find the optimal α (we will use
α = 0.5 as an excellent starting guess throughout these notes).

3 Almost-Newton analysis (optional)
In these notes, we will be somewhat careful about the analysis, but in general
you are not responsible for remembering this level of detail. We will try to
highlight the points that are important in practice for understanding when
solvers might run into trouble, and why.

A common theme in the analysis of “almost Newton” iterations is that
we can build on Newton convergence. We assume throughout that f is C1

Bindel, Spring 2023 Numerical Analysis

and the Jacobian is Lipschitz with constant M . To simplify life, we will also
assume that ‖f ′(x)−1‖ ≤ B in some neighborhood of a desired x∗ such that
f(x∗) = 0. Consider what happens when we subtract the equation defining
the Newton step from a Taylor expansion with remainder of f(x∗) centered
at x:

f(x)+f ′(x)p(x) = 0

−[f(x)+f ′(x)(x∗ − x) +R(x) = 0]
f ′(x)(p(x)− (x∗ − x))−R(x) = 0.

or
p(x) = −(x− x∗) + f ′(x)−1R(x) = −(x− x∗) + d(x).

Under the bounded inverse hypothesis and the Lipschitz bound on f ′, we
know that

‖x+ p(x)− x∗‖ = ‖d(x)‖ ≤ BM

2
‖x− x∗‖2

and so the iteration x 7→ x+p(x) converges quadratically from starting points
near enough x∗. Moreover, a sufficient condition for convergence is that the
initial error is less than 2/(BM).

Now suppose we have an iteration

xk+1 = xk + p̂k

where we think of p̂k as an approximation to the Newton step p(xk). Sub-
tracting x∗ from both sides and adding 0 = p(xk)− p(xk) to the right hand
side gives

ek+1 = ek + p(xk) + p̂k − p(xk).

Triangle inequality and our Newton convergence result gives

‖ek+1‖ ≤ BM

2
‖ek‖2 + ‖p̂k − p(xk)‖.

Therefore, we can think of our convergence analysis in two steps: we first
analyze the error in the Newton iteration, then analyze how close our ap-
proximate Newton step is to a true Newton step.

Bindel, Spring 2023 Numerical Analysis

Figure 2: Convergence of Newton for the autocatalytic blowup problem.

4 Newton iteration
We ran Newton iteration for the autocatalytic problem last time, but let’s
run it again this time using an initial guess of α = 0.5. Convergence from
this initial guess is extremely rapid.

We plot convergence of Newton iteration in Figure 2.

let

v = 0.5*q

rhist = []

for k = 1:10

fv = autocatalytic(v)

v -= Jautocatalytic(v)\fv

push!(rhist, norm(fv))

if norm(fv) < 1e-9

break

end

end

plot(rhist, yscale=:log10, label="Newton")

end

Bindel, Spring 2023 Numerical Analysis

Figure 3: Convergence of chord iteration for the autocatalytic blowup prob-
lem.

4.1 Questions
What happens if you change the residual tolerance from 10−9 to 10−16? Why?

5 Chord iteration
The chord iteration is

xk+1 = xk − f ′(x0)−1f(xk)

Written in this way, the method differs from Newton in only one character —
but what a difference it makes! By re-using the Jacobian at x0 for all steps, we
degrade the progress per step, but each step becomes cheaper. In particular,
we can benefit from re-using a factorization across several steps (though this
is admittedly more of an issue when the matrix is not tridiagonal!). In terms
of the approximate Newton framework, the error behaves like

‖ek+1‖ = O(‖e0‖‖ek‖).

We plot convergence of chord iteration in Figure 3.

Bindel, Spring 2023 Numerical Analysis

let

rhist = []

v = 0.5*q

J0F = ldlt(Jautocatalytic(v)) # Compute an LDL^T factorization of J

for k = 1:10

fv = autocatalytic(v)

v -= J0F\fv

push!(rhist, norm(fv))

if norm(fv) < 1e-9

break

end

end

plot(rhist, yscale=:log10, label="Chord")

end

5.1 Questions
Play with α in the code above to verify that the rate of convergence depends
on the quality of the initial guess.

6 Shamanskii iteration
The chord method involves using one approximate Jacobian forever. The
Shamanskii method involves freezing the Jacobian for m steps before getting
a new Jacobian; that is, one step of Shaminskii looks like

xk+1,0 = xk

xk+1,j+1 = xk+1,j + f ′(xk)−1f(xk+1,j)

xk+1 = xk+1,m.

Like the chord iteration, Shaminskii converges for sufficiently close starting
points, with

‖ek+1‖ = O(‖ek‖m+1)

where ek is the error at a full step (not one of the internal iterations).
We plot convergence of Shaminskii iteration in Figure 4.

Bindel, Spring 2023 Numerical Analysis

Figure 4: Convergence of Shaminskii iteration for the autocatalytic blowup
problem.

let

m = 2

rhist = []

v = 0.5*q

JF = ldlt(Jautocatalytic(v)) # Compute an LDL^T factorization of J

for k = 1:10

fv = autocatalytic(v)

v -= JF\fv

push!(rhist, norm(fv))

if norm(fv) < 1e-9

break

end

if mod(k, m) == 0

JF = ldlt(Jautocatalytic(v))

end

end

plot(rhist, yscale=:log10, label="Shamanskii")

end

Bindel, Spring 2023 Numerical Analysis

Beyond the chord and Shaminskii iterations, the idea of re-using Jaco-
bians occurs in several other methods.

7 Finite-difference Newton
So far, we have assumed that we can compute the Jacobian if we want it.
What if we just don’t want to do the calculus to compute Jacobians? A nat-
ural idea is to approximate each column of the Jacobian by a finite difference
estimate:

f ′(xk)ej ≈
f(xk + hej)− f(xk)

h
.

In general, the more analytic information that we have about the derivatives,
the better off we are. Even knowing only the sparsity pattern of the Jacobian
gives us a lot of information. In our example, changing vj changes fj−1, fj,
and fj+1, but not any other. Hence, we don’t actually need N+1 evaluations
of f to estimate the Jacobian; we can do it with four that are cleverly chosen.

function Jtridiagonal_fd(f, x, h)

N = length(x)

dd = zeros(N) # Diagonal elements

dl = zeros(N-1) # Subdiagonal elements

du = zeros(N-1) # Superdiagonal elements

fx = f(x)

xp = copy(x)

for j = 1:3

xp[:] = x

xp[j:3:N] .+= h

df = (f(xp)-fx)/h

for i = 1:N

if mod(i-j,3) == 0

dd[i] = df[i]

elseif mod(i-j,3) == 1 && i > 1

dl[i-1] = df[i]

elseif mod(i-j,3) == 2 && i < N

du[i] = df[i]

Bindel, Spring 2023 Numerical Analysis

end

end

end

return Tridiagonal(dl, dd, du)

end

Convergence of Newton with a first-order finite-difference approximation
to the Jacobian is

‖ek+1‖ = O(h‖ek‖) +O(‖ek‖2).

7.1 Questions
Can you explain what is going on in the Jtridiagonal_fd code above?

8 Inexact Newton
So far, we have considered approximations to the Newton step based on
approximation of the Jacobian matrix. What if we instead used the exact
Jacobian matrix, but allowed the update linear systems to be solved using
an iterative solver? In this case, there is a small residual with norm ηk, and
the error behaves like

‖ek+1‖ = O(ηk‖ek‖) +O(‖ek‖2).

Hence, we have the following trade-off. If we solve the systems very accurately
(ηk small), then inexact Newton will behave much like ordinary Newton.
Thus, we expect to require few steps of the outer, nonlinear iteration; but
the inner iteration (the linear solver) may require many steps to reach an
acceptable residual tolerance. In contrast, if we choose ηk to be some modest
constant independent of k, then we expect linear convergence of the outer
nonlinear iteration, but each step may run relatively fast, since the linear
systems are not solved to high accuracy.

One attractive feature of Krylov subspace solvers for the Newton system
is that they only require matrix-vector multiplies with the Jacobian — also
known as directional derivative computations. We can approximate these di-
rectional derivaties by finite differences to get a method that may be rather

Bindel, Spring 2023 Numerical Analysis

more attractive than computing a full Jacobian approximation by finite dif-
ferencing. However, it is necessary to use a Krylov subspace method that
tolerates inexact matrix vector multiplies (e.g. FGMRES).

	Life beyond Newton
	A running example redux
	Questions

	Almost-Newton analysis (optional)
	Newton iteration
	Questions

	Chord iteration
	Questions

	Shamanskii iteration
	Finite-difference Newton
	Questions

	Inexact Newton

