
Bindel, Spring 2023 Numerical Analysis

2023-04-10

1 Nonlinear least squares
Today we consider a special class of optimization problems: nonlinear least
squares. Given f : Rn → Rm for m > n, we seek to minimize the objective
function

φ(x) =
1

2
‖f(x)‖2.

Differentiating gives us the critical stationarity condition

∀δx ∈ Rn, δφ(x) = f(x)Tf ′(x)δx = 0;

or, equivalently,

0 = ∇φ(x) = f ′(x)Tf(x) = J(x)Tf(x).

Like linear least squares, nonlinear least squares problems often arise from
model fitting. Some important special cases include

• Separable problems of the form f(x, y) = Φ(y)x− b
• Linear models with nonlinear loss functions, where fj(x) = ψ((Ax−b)j)

For this lecture, let’s consider three small example problems: one gen-
eral nonlinear least squares problem, one separable problem, and one robust
regression problem involving a nonlinear loss function. We will use these
examples to illustrate different ways we can use problem structure – and also
show how to think about initial guesses.

2 Newton and Gauss-Newton
The Hessian of φ is

Hφ(x) = J(x)TJ(x) +
m∑
i=0

fi(x)Hfi(x)

and while it is certainly possible to run an ordinary Newton iteration for the
optimization problem, we can also note that the second term is potentially

Bindel, Spring 2023 Numerical Analysis

small in the case when we can solve to a small residual (i.e. when f(x) gets
close to zero). Hence, we consider the Gauss-Newton iteration, a scaled
gradient descent iteration with the scaling matrix J(x)TJ(x), i.e.

xk+1 = xk −
[
J(xk)TJ(xk)

]−1
J(xk)Tf(xk)

= xk − J(xk)†f(xk)

As long as J remains nonsingular, the Gauss-Newton direction is a descent
direction. And assuming J is Lipschitz with constant L near a stationary
point x∗, one can derive an error iteration

‖ek+1‖ ≤ L‖J(x∗)†‖2‖f(x∗)‖‖ek‖+O(‖ek‖2)

This is an upper bound, but it suggests (accurately) that Gauss-Newton
is not guaranteed to converge even from small initial error. At the same
time, convergence can be very rapid for well-behaved problems (J(x∗) not
too near singular, Lipschitz constant is not too big) when the residual norm
at the solution is small. If f(x∗) = 0, we recover the same type of quadratic
convergence we see for Newton’s method.

function gauss_newton(fJ, x0; rtol=1e-8, maxiter=100,

monitor=(x, rnorm)->nothing)

x = copy(x0)

for k = 1:maxiter

fx, Jx = fJ(x)

rnorm = norm(Jx'*fx)

monitor(x, rnorm)

if norm(Jx'*fx) < rtol

return x

end

x -= Jx\fx # Solves the least squares update

end

error("Did not reach convergence in $maxiter iterations")

end

gauss_newton(f, J, x0; rtol=1e-8, maxiter=100, monitor=(x, rnorm)->nothing) =

gauss_newton((x)->(f(x), J(x)), x0,

rtol=rtol, maxiter=maxiter, monitor=monitor)

Bindel, Spring 2023 Numerical Analysis

2.0.1 Questions

1. Show how to write one Gauss-Newton step in terms of a linear least
squares problem.

2. Suppose m = n. What does Gauss-Newton look like in this case?
3. Justify the claim that if J is nonsingular, the Gauss-Newton direction

is a descent direction.

2.1 A reaction rate example
This example is taken from Wikipedia and involves fitting the chemical re-
action rate for an enzyme mediated reaction. The larger the substrate con-
centration of the enzyme ([S]), the faster the rate of reaction R, according
to a relation of the form

R =
Vmax[S]

KM + [S]

Writing the unknowns as β =
[
Vmax KM

]T , we solve the nonlinear least
squares problem

minimize
∑
i

(
Ri −

β1Si
β2 + Si

)2

over a collected data set. To get an initial guess, we multiply each residual
by β2 + Si to solve the ordinary least squares problem

minimize
∑
i

((β2 + Si)Ri − β1Si)
2

Biological reaction-rate model fitting problem from Wikipedia

biox_f, biox_J, biox_H, biox_β0 = let

Data set

S = [0.038; 0.194; 0.425; 0.626; 1.253; 2.500; 3.740]

R = [0.050; 0.127; 0.094; 0.2122; 0.2729; 0.2665; 0.3317]

Residual function and Jacobian

f(β) = R-β[1]*S ./ (β[2] .+ S)

J(β) = [-S./(β[2] .+ S) β[1]*S./(β[2] .+ S).^2]

Hessian function

https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm#Example

Bindel, Spring 2023 Numerical Analysis

function H(β)

Hβ = J(β)'*J(β)

fβ = f(β)

for j = 1:length(fβ)

Hβ += fβ[j] *

[0.0 S[j]/(β[2]+S[j])^2 ;

S[j]/(β[2]+S[j])^2 -2.0*β[1]*S[j]/(β[2] + S[j])^3]

end

Hβ

end

Initial guess based on R(β[2] + S) ≈ β[1]*S

β0 = [S -R]\(R .* S)

f, J, H, β0

end

According to the Wikipedia article, the true parameters are about β̂1 =
0.362 and β̂2 = 0.556; a quick sanity check reassures us that we have a good
initial guess from the linear least squares problem.

Let’s apply both Gauss-Newton and Newton to solve the problem. We
show the convergence of the two iterations in Figure 1.

let

biox_resids = []

biox_β_gn =

gauss_newton(biox_f, biox_J, biox_β0, rtol=1e-14,

monitor=(x, rnorm)->push!(biox_resids, rnorm))

p = plot(biox_resids, yscale=:log10,

ylabel="\$||J^T f(x_k)||\$", xlabel="\$k\$", label="Gauss-Newton")

biox_resids_n = []

biox_β = copy(biox_β0)

for j = 1:10

push!(biox_resids_n, norm(biox_J(biox_β)'*biox_f(biox_β)))

biox_β -= biox_H(biox_β)\(biox_J(biox_β)'*biox_f(biox_β))

end

Bindel, Spring 2023 Numerical Analysis

Figure 1: Convergence of Gauss-Newton and Newton for a biological reaction
rate fitting example.

plot!(biox_resids_n[biox_resids_n .> 0], label="Newton")

md"""

- Gauss-Newton computed ($(biox_β_gn[1]), $(biox_β_gn[2]))

- Newton computed ($(biox_β[1]), $(biox_β[2]))

$p

"""

end

Compared to the Newton iteration, Gauss-Newton is getting (fast) linear
convergence, and ends up taking about twice as many iterations to drive
the residual down close to 10−15. At the same time, Gauss-Newton doesn’t
require that we form the Hessian matrix!

2.2 An actual bound for Gauss-Newton (optional)
We are not going to do the actual error iteration for Gauss-Newton iteration
in class, but it is not that conceptually difficult – it’s just that the algebra is
a bit tedious. We’ll keep it in the notes for the sake of completeness.

Bindel, Spring 2023 Numerical Analysis

In the interest of keeping the notation concise, let’s write J∗ = J(x∗) and
Jk = J(xk) = J∗ + Ek. Similarly, let f∗ = f(x∗). We assume throughout
the derivation that J is Lipschitz with constant L (in the 2-norm) and that
σmin(J∗) > L‖ek‖, implying that

σmin(Jk) ≥ σmin(J∗)− ‖Ek‖ ≥ σmin(J∗)− L‖ek‖ > 0.

By the fundamental theorem of calculus,

f(xk) = f∗ +

∫ 1

0

J(x+ ξek)ekdξ

Therefore we can write pk = −J†
kf(x

k) as

pk = −(JTk Jk)
−1JTk f∗ − J†

k

∫ 1

0

J(x+ ξek)ek dξ

Using the fact that JT∗ f∗ = 0 (by stationarity), we have

−(JTk Jk)
−1JTk f∗ = −(JTk Jk)

−1ET
k f∗,

which gives us the bound

‖ − (JTk Jk)
−1JTk f∗‖ ≤ L‖f ∗‖‖ek‖

(σmin(J∗)− L‖ek‖)2
.

and using the fact that J†
kJk = I (assuming Jk full rank), we have

−J†
k

∫ 1

0

J(x+ ξek)ek dξ = −ek − J†
k

∫ 1

0

(J(x+ ξek)− Jk)e
k dξ,

and by the Lipschitz condition and consistency,

‖ − J†
k

∫ 1

0

(J(x+ ξek)− Jk)e
k dξ‖ ≤ L‖ek‖2

2(σmin(J∗)− L‖ek‖)

Substituting these bounds into ek+1 = ek + pk, we have

‖ek+1‖ ≤ L

(
‖f ∗‖

(σmin(J∗)− L‖ek‖)2
+

‖ek‖/2
σmin(J∗)− L‖ek‖

)
‖ek‖

Bindel, Spring 2023 Numerical Analysis

and if L‖f∗‖/σmin(J∗)
2 < 1 then a sufficient condition for error to decrease

by some α < 1 (where α does not depend on ek) is

‖ek‖ ≤ 2σmin(J∗)

5L

(
1− L‖f∗‖

‖σmin(J∗)‖2

)
and so the Gauss-Newton iteration is guaranteed to converge if

‖ek‖ ≤ 2σmin(J∗)

5L

(
1− L‖f∗‖

‖σmin(J∗)‖2

)

3 Levenberg-Marquardt
Gauss-Newton can converge quite quickly under some circumstances, but
suffers when

• The minimal residual is large
• The Jacobian is close to singular
• The Lipschitz constant on J is large

There is not much we can do about ‖f(x∗)‖ or about the Lipschitz con-
stant on the Jacobian. But we do know how to deal with ill-conditioned
least squares problems! The Levenberg-Marquardt algorithm replaces the
least squares solve in the Gauss-Newton algorithm with a regularized least
squares solve:

xk+1 = xk − (JTk Jk + λ2D2
k)

−1JTk f(x
k)

The scaling matrix Dk may be an identity (suggested by Levenberg) or a
diagonal matrix whose diagonal entries are the column norms of Jk (suggested
by Marquardt).

When λ approaches zero, the Levenberg-Marquardt step approaches the
Gauss-Newton step. As λ becomes large, it approaches a small scaled gradi-
ent step with the scaling matrices Dk. Unlike Gauss-Newton, we can always
get Levenberg-Marquardt to converge given a good enough initial guess and
a large enough λ. In practice, though, we usually choose λ adaptively. We’ll
return to how we do this in another lecture.

function levenberg_marquardt(fJ, x0; λ = 1e-3, rtol=1e-8, maxiter=100,

monitor=(x, rnorm)->nothing)

Bindel, Spring 2023 Numerical Analysis

x = copy(x0)

for k = 1:maxiter

fx, Jx = fJ(x)

d = sqrt.(sum(Jx.^2, dims=1))

rnorm = norm(Jx'*fx)

monitor(x, rnorm)

if norm(Jx'*fx) < rtol

return x

end

x -= [Jx; sqrt(λ)*diagm(d[:])]\[fx; zeros(length(x))]

end

error("Did not reach convergence in $maxiter iterations")

end

levenberg_marquardt(f, J, x0; λ = 1e-3, rtol=1e-8, maxiter=100,

monitor=(x, rnorm)->nothing) =

levenberg_marquardt((x)->(f(x), J(x)), x0, λ=λ, rtol=rtol,

maxiter=maxiter, monitor=monitor)

3.0.1 Questions

1. Justify the claims about the asymptotic behavior of Levenberg-Marquardt
as λ approaches 0 and ∞.

2. Explain the implementation of the Levenberg-Marquardt step in the
code.

3.1 A peak-fitting example
In various types of spectroscopy, one sees “peaks” in frequency space associ-
ated with different types of resonances. A Lorentzian peak (also known as a
Breit-Wigner peak or a Cauchy distribution) with center x0, width parameter
Γ, and amplitude parameter c has the form

c

π

Γ/2

(x− x0)2 + (Γ/2)2
.

Our problem here is to fit empirical measurements to a sum of Lorentzian
peaks. This problem occurs often enough that there are specific approaches
people take (we wouldn’t always treat this as a general nonlinear least squares

https://en.wikipedia.org/wiki/Cauchy_distribution

Bindel, Spring 2023 Numerical Analysis

problem), but we will only take advantage of the partially linear nature of
the problem, i.e. that we are minimizing

∑
j

(
yj −

∑
i

φ(xj;xc,i,Γi)ci

)2

where φ(xj;xc,i,Γi) is the value at xj of the Lorentzian peak with amplitude
one at center xc,i and with scale parameter Γi. That is, the amplitudes are
determined by a linear least squares problem in which the coefficient matrix
depends on some other parameters.

Lorentzian peak-finding problem

lorx_fJ, lorx_ΦJ, lorx_yy, lorx_p0, lorx_plot = let

Reference peak locations, widths, and amplitudes

xc_ref = [0.5; 1.3; 1.5]

Γs_ref = [0.3; 0.1; 0.1]

cs_ref = [0.6; 1.0; 0.8]

Reference signal function -- combination of Lorentzians

ϕref(x, xc, Γs) = Γs/(2π) ./ ((x.-xc).^2 .+ (0.5*Γs).^2)

Generate noisy signal

xx = range(0.0, 2.0, length=100)

yy = [ϕref(x, xc_ref, Γs_ref)'*cs_ref for x in xx]

yy += 5e-2 * randn(100)

Residual and Jacobian

function fJresid(xc, Γ, c)

resid = copy(yy)

J = zeros(100,9)

for k = 1:3

f = -c[k]*Γ[k]/(2π)

df_dΓ = -c[k]/(2π)

df_dc = -Γ[k]/(2π)

g = (xx.-xc[k]).^2 .+ (0.5*Γ[k])^2

Bindel, Spring 2023 Numerical Analysis

dg_dxc = -2*(xx.-xc[k])

dg_dΓ = 0.5*Γ[k]

resid += f./g

J[:,k] = -f./g.^2 .* dg_dxc

J[:,k+3] = (df_dΓ.*g .- f.*dg_dΓ)./g.^2

J[:,k+6] = df_dc./g

end

resid, J

end

Basis vectors and derivatives with respect to xc and Γ

function ΦJmatrix(xc, Γ)

Φ = zeros(100,3)

J = zeros(100,6)

for k = 1:3

f = Γ[k]/(2π)

df_dΓ = 1.0/(2π)

g = (xx.-xc[k]).^2 .+ (0.5*Γ[k])^2

dg_dxc = -2*(xx.-xc[k])

dg_dΓ = 0.5*Γ[k]

Φ[:,k] = f./g

J[:,k] = -f./g.^2 .* dg_dxc

J[:,k+3] = (df_dΓ.*g .- f.*dg_dΓ)./g.^2

end

Φ, J

end

Residual and Jacobian as functions of p = [xc, Γ, c]

fJp(p) = fJresid(p[1:3], p[4:6], p[7:9])

Basis and Jacobian as functions of [xc, Γ]

ΦJp(p) = ΦJmatrix(p[1:3], p[4:6])

Bindel, Spring 2023 Numerical Analysis

Figure 2: Initial guess for Lorentzian fitting example.

Initial guess

p0 = [0.5; 1.2; 1.6; 0.2; 0.2; 0.2; 1.0; 1.0; 1.0]

Plotting function

function lorx_plot(p)

plot(xx, yy, label="Signal")

plot!(xx, yy-fJp(p)[1], style=:dash, label="Approximation")

end

fJp, ΦJp, yy, p0, lorx_plot

end

We start with a not-fantastic initial guess (Figure 2). Getting a good
initial guess is actually an interesting problem, but one that we will not ad-
dress here. The converged solution is shown in Figure 3, and the convergence
history in Figure 4. From this initial guess, Gauss-Newton does not have any
hope of convergence, but Levenberg-Marquardt does.

Bindel, Spring 2023 Numerical Analysis

Figure 3: Converged solution for Lorentzian fitting example.

Figure 4: Convergence of Levenberg-Marquardt for Lorentzian fitting exam-
ple.

Bindel, Spring 2023 Numerical Analysis

3.1.1 Questions

1. Play with the parameter λ in the Levenberg-Marquardt call. What
happens?

2. Play with the initial guess. Does convergence improve from a better
starting guess?

3. Argue that the “true” signal looks like p(x)/q(x) for low degree poly-
nomials p and q, where q has complex roots xc,i± ιΓi/2. We can find p
and q by setting p(xi)−yiq(xi) ≈ 0 in a least squares sense; how would
we implement this directly to get a better initial guess for the centers
and widths of the Lorentzians?

4 Variable projection
In the Lorentzian peak-fitting example, our function f had the form

f(xc,Γ, c) = y − Φ(xc,Γ)c.

But if we know the centers and width parameters, then computing the ampli-
tude parameters becomes a standard linear least squares problem. Putting
in the solution gives us the reduced problem (or projected problem)

fproj(xc,Γ) =
(
I − Φ(xc,Γ)Φ(xc,Γ)

†) y = Py

where P = I −ΦΦ† is the residual projector. The reduced problem can then
be solved with any of our nonlinear least-squares solvers. This technique,
known as variable projection, is widely used in a variety of applications.

Minimizing the norm of fproj is often nicer than minimizing the norm of
the original f . Of course, in order to do this, we need to be able to compute
the Jacobian of fproj! Fortunately, we have lots of experience at this point
with computing such derivatives. Using the definition of the pseudoinverse
and mumbling over algebra for a while yields:

δP = −(δΦ)Φ† − (Φ†)T (δΦ)T + (Φ†)T (ΦT δΦ + (δΦ)TΦ)Φ†

= −P (δΦ)Φ† − (Φ†)T (δΦ)TP

δfproj = (δP)y = −P (δΦ)c− (Φ†)T (δΦ)T r

where c = Φ†y and r = fproj = y − Φc. Given the full QR decomposition

Φ =
[
Q1 Q2

] [R1

0

]

http://stacks.iop.org/IP/19/R1

Bindel, Spring 2023 Numerical Analysis

and observing that P = I −Q1Q
T
1 = Q2Q

T
2 and (Φ†)T = Q1R

−T
1 , we have

δfproj = −Q2Q
T
2 (δΦ)c−Q1R

−T (δΦ)T r = −Q
[
R−T (δΦ)T r
QT

2 (δΦ)c

]
We know that the Householder QR factorization stores Q implicitly, and

while we can apply Q and QT quickly, we probably do not want to explicitly
formQ2. But we can evaluate the above expression without explicitly forming
Q2 by

• Forming QT (δΦ)c
• Overwriting the leading rows with R−T (δΦ)T r
• Multiplying the result by Q
• Negating the whole thing

In the case of the peak-finding problem, each of the parameters affects
only one basis vector. So, for example

∂fproj

∂xc,j
= −Q

R−T ej

(
∂φj
∂xc,j

)T
r

QT
2

(
∂φi
∂xc,j

)
cj

and similarly for the derivatives with respect to the width parameters Γj.

function lorx_fJproj(p)

Φ, JΦ = lorx_ΦJ(p)

F = qr(Φ)

Compute c and r (aka f_proj)

QTyy = F.Q'*lorx_yy

c = F.R\QTyy[1:3]

QTyy[1:3] .= 0.0

r = F.Q*QTyy

Compute W = -Q'*Jf_proj via the above

W = (F.Q'*JΦ) .* [c; c]'

z = JΦ'*r

invRT = inv(F.R')

W[1:3,1:3] = invRT .* z[1:3]'

Bindel, Spring 2023 Numerical Analysis

Figure 5: Converged solution for Lorentzian fitting example with variable
projection formulation.

W[1:3,4:6] = invRT .* z[4:6]'

Return f_proj and the Jacobian of f_proj

r, -(F.Q * W)

end

Unlike the original full problem, the projected version of the problem
can be solved rather quickly with Gauss-Newton, even if we use our not-so-
fantastic initial guess. The converged solution is shown in Figure 5; we show
the convergence plot in Figure 6.

4.0.1 Questions

1. Can you derive the expression for δP yourself?
2. Explain the expression for the derivative of fproj with respect to xc,i.
3. We claimed that P = I−Q1Q

T
1 = Q2Q

T
2 ; why are these two expressions

equivalent?

Bindel, Spring 2023 Numerical Analysis

Figure 6: Convergence of Gauss-Newton for variable projection formulation
of Lorentzian fitting example.

5 Iteratively reweighted least squares
A number of optimization problems from statistics have the form

minimize φ(x) =
m∑
i=1

ρ(ri), r = Ax− b.

where we will assume ρ is an even function with ρ(0) = 0. This can, of
course, be converted to a nonlinear least squares problem, but we will stick
with this form. Let ψ denote the derivative of ρ; then we have

∇φ(x) = ATψ(r)

Hφ(x) = AT diag(ψ′(r))A

where ψ(r) and ψ′(r) should be interpreted elementwise. A Newton step for
this problem is

p = −(AT diag(ψ′(r))A)−1ATψ(r)

and this is equivalent to solving the weighted least squares problem

minimize
∥∥∥∥ ψ(r)ψ′(r)

+ Ap

∥∥∥∥2
diag(ψ′(r))

Bindel, Spring 2023 Numerical Analysis

where ψ(r)/ψ′(r) should be interpreted elementwise.
Of course, we already know that Newton iteration is not globally conver-

gent in general, but this iteration has another irritating issue: it is undefined
when any component of ψ′(r) is exactly zero! There are interesting cases
where this is a real issue. However, an a slight modification avoids this prob-
lem and is globally convergent for convex loss functions. Define W (f) to be
the diagonal matrix of weights wk = ψ(rk)/rk; then x is a stationary point
for φ if

ATψ(r) = ATW (r)r = 0.

This suggests the fixed point iteration

ATW (rk)rk+1 = 0,

that is,
xk+1 = argmin ‖Ax− y‖2W (rk).

In words, at each step we compute a new weighted least squares fit to the
data. Observe that

wk =
ψ(rk)

rk
=
ψ(rk)− ψ(0)

rk − 0
= ψ′(rk) + o(fk)

and
ψ(rk)

ψ′(rk)
=
ψ′(0)rk
ψ′(0)

+ o(rk) = rk + o(rk);

hence, as with Gauss-Newton, this iteration is similar to Newton iteration
when the residuals are small.

This algorithm is an example of an iteratively reweighted least squares
(IRLS) algorithm. Several algorithms share the IRLS name; all have the
property that each iterate is the solution to a weighted least squares problem,
where the weights vary from iteration to iteration.

function irls(A, b, x0, ψ; maxiter=100, rtol=1e-8,

monitor=(x,rnorm)->nothing)

x = copy(x0)

for k = 1:maxiter

r = A*x-b

ψr = ψ.(r)

rnorm = norm(A'*ψr)

Bindel, Spring 2023 Numerical Analysis

monitor(x, rnorm)

if rnorm < rtol

return x

end

ws = sqrt.(ψr./r)

ws[r .== 0] .= 0.0

x = (ws .* A)\(ws .* b)

end

end

5.0.1 Questions

1. Write the IRLS iteration in additive update form – that is, what least
squares problem does pk = xk+1 − xk satisfy? Compare to the Newton
least squares problem.

2. Explain the line ws[r .== 0] .= 0.0 in the irls routine.

5.1 Robust regression
Least squares regression works well for Gaussian noise, but tends to perform
poorly in the presence of outliers. Fitting procedures that better tolerate
outliers are generally known as robust regression procedures. The most pop-
ular robust regression techniques involve solving a nonlinear least squares
problem

minimize
m∑
j=1

ρ(rj), r = Ax− b

for some loss function ρ that grows more slowly than the squared loss. The
coefficients from this estimation procedure are known as M -estimators.

In order to compute M -estimators, we first want some initial guess at the
solution and at the typical level of (non-outlier) noise in the data. A typical
trick to do this is to draw random subsets of the data until we think that
with high probability we have at least one subset that contains no outliers.
For each subset, we do an ordinary least squares fit, and then judge quality
based on the median absolute deviation (MAD), i.e. the median absolute
value of the residuals. We return as our initial guess for x the solution that
has the smallest MAD. Based on the assumption that non-outlier data is

https://en.wikipedia.org/wiki/M-estimator
https://en.wikipedia.org/wiki/Median_absolute_deviation

Bindel, Spring 2023 Numerical Analysis

subject to normal noise, we also return a scale factor of MAD/0.6745 (since
for the standard normal the expected value of the MAD is 0.6745).

Estimate Ax ≈ b with outlier fraction ρ

function rr_init(A, b, ρ; nbatch=0, pfail=1e-6)

m, n = size(A)

nbatch = max(n, nbatch)

Scale factor based on median absolute deviation (MAD)

s_mad(r) = median(abs.(r))/0.645

Number of trials such that

P(all draws of size n include an outlier) < pfail

Analysis assumes m is sufficiently bigger than n that drawing

with or without replacement is about the same.

ntrials = ceil(log(pfail)/log1p(-(1.0-ρ)^nbatch))

Fit to subsets of the data and take the solution with the

smallest median absolute deviation (MAD)

xbest = zeros(n)

mad_best = Inf

for t = 1:ntrials

s = randperm(m)[1:nbatch]

x = A[s,:]\b[s]

mad = median(abs.(b-A*x))

if mad < mad_best

xbest[:] = x

mad_best = mad

end

end

Return best fit wrt MAD and estimated scale factor

xbest, mad_best/0.6745

end

Two of the most common loss functions used in robust regression are

• Huber loss: quadratic near the origin and then grows linearly away
from the origin

Bindel, Spring 2023 Numerical Analysis

• Tukey loss: roughly quadratic near the origin, then flattens out to a
constant

The Huber loss function is convex, and so the nonlinear least squares
problem with Huber loss has a unique solution. The Tukey loss is less sensi-
tive to extreme outliers, but may in general lead to many local minimizers.

begin

Huber loss function and its derivatives

huber(r, c) = if abs(r) < c 0.5*r^2 else c*(abs(r)-c/2) end

dhuber(r, c) = if abs(r) < c r else c*sign(r) end

Tukey loss function and its derivatives

tukey(r, c) = if abs(r) < c c^2/6*(1.0-(1.0-(r/c)^2)^3) else c^2/6 end

dtukey(r, c) = if abs(r) < c r*(1.0-(r/c)^2)^2 else 0.0 end

end

Now we set up and solve a robust regression problem with 10% outliers,
using rr_init to get an initial guess and the iteratively weighted least squares
procedure to optimize the Tukey loss with an appropriately chosen scale
factor.

Robust regression / M-estimator example with Tukey biweight loss

rrx_results = let

Set up a least-squares type of problem with random data

A = rand(200,3)

xref = rand(3)

b = A*xref + 5e-2 * randn(200)

Introduce some outliers

b[50:60] .= 100.0

Get initialization

x0, s = rr_init(A, b, 0.1)

Tukey loss with appropriate scale factor

ρ(r) = tukey(r, 4.685*s)

Bindel, Spring 2023 Numerical Analysis

Figure 7: Convergence of IRLS.

ψ(r) = dtukey(r, 4.685*s)

Run the IRLS algorithm

resids = []

x = irls(A, b, x0, ψ, rtol=1e-12, monitor=(x,rnorm)->push!(resids, rnorm))

Return scale factor, errors in initial guess and output, and residuals

s, norm(x0-xref), norm(x-xref), resids

end

Running this example gives an initial estimate with error of 0.033 and an
associated scale factor of 0.052. After 18 steps of IRLS, we get a converged
result with an estimation error of 0.030. The convergence plot is shown in
Figure 7.

5.1.1 Questions

1. Will the rr_init routine fail if we unluckily draw a subset such that
As[s,:] is singular?

2. Plot ψ(r)/r at the converged solution. Explain what you observe.

	Nonlinear least squares
	Newton and Gauss-Newton
	Questions
	A reaction rate example
	An actual bound for Gauss-Newton (optional)

	Levenberg-Marquardt
	Questions
	A peak-fitting example
	Questions

	Variable projection
	Questions

	Iteratively reweighted least squares
	Questions
	Robust regression
	Questions

