
Bindel, Spring 2023 Numerical Analysis

2023-03-31

1 Optimization essentials
Last time, we mostly focused on solving systems of nonlinear equations.
Today, we consider optimization problems. The two perspectives are very
complimentary, but we will delve into that further after break.

Recall from your calculus classes the second-order Taylor expansion. If
φ : Rn → R is C2 (i.e. if it is at least twice continuously differentiable) then
we have the expansion

φ(x+ u) = φ(x) + φ′(x)u+
1

2
uTHφ(x)u+ o(‖u‖2)

where φ′(x) ∈ R1×n is the derivative of φ and Hφ is the Hessian matrix
consisting of second derivatives:

(Hφ)ij =
∂φ

∂xi∂xj

.

The gradient ∇φ(x) = φ′(x)T is a column vector (rather than a row vector).
Let’s give an illustration comparing a function φex : R2 → R to the first

and second-order Taylor expansions about some point x0. To do this, we will
need the gradient and the Hessian

φ(x) = − cos(x1 + x2) + sin(x2)
2

∇φ(x) =

[
sin(x1 + x2)

sin(x1 + x2) + sin(2x2)

]
Hφ =

[
cos(x1 + x2) cos(x1 + x2)
cos(x1 + x2) cos(x1 + x2) + 2 cos(2x2)

]
We compare φ to first-order and second-order Taylor expansions in Fig-

ures 1-2.
If ∇φ(x) 6= 0 then ∇φ(x) and −∇φ(x) are the directions of steepest ascent

and descent, respectively (we will have more to say on this point presently).
If ∇φ(x) = 0, then we say x is a stationary point or critical point. The first
derivative test says that if x minimizes φ (and φ is differentiable) then the
gradient of x must be zero; otherwise, there is a “downhill” direction, and a
point near x achieves a smaller function value.

Bindel, Spring 2023 Numerical Analysis

Figure 1: Contour plot of φ vs first-order Taylor approximation φ̂ (left) and
plot of φ− φ̂ (right).

Figure 2: Contour plot of φ vs second-order Taylor approximation φ̂ (left)
and plot of φ− φ̂ (right).

Bindel, Spring 2023 Numerical Analysis

A stationary point does not need to be a local minimizer; it might also
be a maximizer, or a saddle point. The second derivative test says that for a
critical point x to be a (local) minimizer, the Hessian Hφ(x) must be at least
positive semi-definite. If x is a stationary point and Hφ is strictly positive
definite, then x must be a local minimizer; in this case, we call x a strong
local minimizer.

One approach to the problem of minimizing φ is to run Newton iteration
on the critical point equation ∇φ(x) = 0. The Jacobian of the function
∇φ(x) is simply the Hessian matrix, so Newton’s iteration for finding the
critical point is just

xk+1 = xk −Hφ(xk)
−1∇φ(xk).

We can derive this in the same way that we derived Newton’s iteration for
other nonlinear equations; or we can derive it from finding the critical point
of a quadratic approximation to φ:

φ̂(xk + pk) = φ(xk) + φ′(xk)pk +
1

2
pTkHφ(xk)pk.

The critical point occurs for pk = −Hφ(xk)
−2∇φ(xk); but this critical point

is a strong local minimum iff Hφ(xk) is positive definite.

function plot_convergence(ϕ, xs, resids)

xx = range(-1.0, 1.0, length=100)

p1 = plot(xx, xx, ϕ, st=:contour)

plot!([x[1] for x in xs], [x[2] for x in xs], marker=true, label=false)

p2 = plot(resids[resids .> 0], yscale=:log10, legend=false)

plot(p1, p2, layout=(1,2))

end

let

x = [0.0; 0.5]

Newton loop -- plot where we're going

resids = []

xs = [copy(x)]

for k = 1:5

Bindel, Spring 2023 Numerical Analysis

Figure 3: Convergence of Newton iteration on example φ.

Compute the gradient and record the norm

g = ∇ϕex(x)

push!(resids, norm(g))

Take a Newton step and record the point

x -= Hϕex(x)\g

push!(xs, copy(x))

end

Plot the function and the iterates

plot_convergence((x,y)->ϕex([x; y]), xs, resids)

end

There are a couple reasons we might want to not just say “run Newton
to find a critical point” and call it a day. Three key ones are:

• Computing Hessians can be a bit of a pain.

Bindel, Spring 2023 Numerical Analysis

• We can take advantage of the fact that this is not a general system of
nonlinear equations in devising and analyzing methods.

• If we only seek to solve the critical point equation, we might end up
finding a maximizer or saddle point as easily as a minimizer.

For this reason, we will discuss a different class of iterations, the (scaled)
gradient descent methods and their relatives.

1.1 Questions
For all these questions, assume φ is twice continuously differentiable and that
the Hessian Hφ is Lipschitz with constant M .

1. Change the starting point in the iteration above (e.g. to the point
(0, 0.6)). What changes?

2. Explain why φ(x + u) = φ(x) +∇φ(x)Tu + 1
2
uTHφ(x + ξu)u for some

ξ ∈ [0, 1].
3. Argue that |φ(x) +∇φ(x)Tu+ 1

2
uTHφ(x)u− φ(x+ u)| ≤ M

2
‖u‖3.

4. Let p be a Newton update starting from x, and let w = φ(x)−φ(x+p)
be the improvement in the function value during that Newton step.
Show that

∣∣w − 1
2
pTHφ(x)p

∣∣ ≤ M
2
‖p‖3.

2 Gradient descent
One of the simplest optimization methods is the steepest descent or gradient
descent method

xk+1 = xk + αkpk

where αk is a step size and pk = −∇φ(xk).
Let’s try an example using the test function above. Play with α. What

happens to the convergence?

let

x = [0.0; 0.5]

α=0.1

Gradient descent loop -- plot where we're going

resids = []

Bindel, Spring 2023 Numerical Analysis

Figure 4: Convergence of gradient descent on example φ.

xs = [copy(x)]

for k = 1:100

Compute the gradient and record the norm

g = ∇ϕex(x)

push!(resids, norm(g))

Take a gradient descent step and record the point

x -= α*g

push!(xs, copy(x))

end

Plot the function and the iterates

plot_convergence((x,y)->ϕex([x; y]), xs, resids)

end

To understand the convergence of this method, consider gradient descent

Bindel, Spring 2023 Numerical Analysis

with a fixed step size α for the quadratic model problem

φ(x) =
1

2
xTAx+ bTx+ c

where A is symmetric positive definite. We have computed the gradient for
a quadratic before:

∇φ(x) = Ax+ b,

which gives us the iteration equation

xk+1 = xk − α(Axk + b).

Subtracting the fixed point equation

x∗ = x∗ − α(Ax∗ + b)

yields the error iteration

ek+1 = (I − αA)ek.

If {λj} are the eigenvalues of A, then the eigenvalues of I−αA are {1−αλj}.
The spectral radius of the iteration matrix is thus

min{|1− αλj|}j = min (|1− αλmin|, |1− αλmax|) .

The iteration converges provided α < 1/λmax, and the optimal α is

α∗ =
2

λmin + λmax
,

which leads to the spectral radius

1− 2λmin

λmin + λmax
= 1− 2

1 + κ(A)

where κ(A) = λmax/λmin is the condition number for the (symmetric positive
definite) matrix A. If A is ill-conditioned, then, we are forced to take very
small steps to guarantee convergence, and convergence may be heart break-
ingly slow. We will get to the minimum in the long run — but, then again,
in the long run we all die.

Our example problem is not quadratic, of course. But close to the mini-
mum at (0, 0), it is close enough to quadratic that we get a good picture of
the convergence from the quadratic approximation.

If we take a somewhat less well-conditioned problem, we get a significantly
slower optimal rate of convergence (Figure 5).

Bindel, Spring 2023 Numerical Analysis

Figure 5: Convergence of gradient descent on an ill-conditioned problem.

let

A = [1.0 0.0; 0.0 1e-2]

x = [1.0; 1.0]

λs = eigvals(A)

α = 2/(λs[1]+λs[2])

Steepest descent loop

xs = [copy(x)]

resids = []

for k = 1:100

x -= α*A*x

push!(xs, copy(x))

push!(resids, 0.5*x'*A*x)

end

Plot the function and the iterates

plot_convergence((x,y)->0.5*[x; y]'*A*[x; y], xs, resids)

end

The behavior of steepest descent iteration on a quadratic model problem

Bindel, Spring 2023 Numerical Analysis

is indicative of the behavior more generally: if x∗ is a strong local minimizer
of some general nonlinear φ, then gradient descent with sufficiently small
step size will converge locally to x∗. But if Hφ(x∗) is ill-conditioned, then
one has to take small steps, and the rate of convergence can be quite slow.

Not all problems are terrible ill-conditioned, and so in many cases simple
gradient descent algorithms can work quite well. For ill-conditioned prob-
lems, though, we would like to change something about the algorithm. One
approach is to keep the gradient descent direction and adapt the step size
in a clever way; the Barzelei-Borwein (BB) method and related approaches
follow this approach. These remarkable methods deserve to be better known,
but in the interest of fitting the course into the semester, we will turn instead
to the problem of choosing better directions.

3 “Steepest” descent
At a point x, a direction p is a descent direction for φ if φ′(x)p < 0. We
measure how “steep” a descent direction is by the rate at which the function
value decreases if we move at unit speed in that direction: −φ′(x)p/‖p‖. If
‖ · ‖ is the ordinary Euclidean norm on Rn, we have that the direction of
steepest descent is −φ′(x)T/‖φ′(x)‖. But what happens if we use a different
norm for measuring distance?

Put differently, consider the problem of maximizing −gTu over the ball
‖u‖ ≤ 1. Then

• Over ‖u‖2 ≤ 1, we have u = −g/‖g‖
• Over ‖u‖∞ ≤ 1, we have u = − sign(g)
• Over ‖u‖1 ≤ 1, we have u = − sign(gk)ek where gk is the largest

magnitude entry of g.

Of course, these are not the only norms out there. In particular, if M is
a positive definite matrix, then there is an associated inner product

〈x, y〉M = y∗Mx

and an associated Euclidean norm

‖x‖M =
√
xTMx.

Maximizing −gTu/‖u‖M gives us u ∝ −M−1g.

Bindel, Spring 2023 Numerical Analysis

4 Scaled gradient descent
The scaled gradient descent iteration takes the form

xk+1 = xk + αkpk, Mkpk = −∇φ(xk).

where αk and pk are the step size and direction, as before, and Mk is a
symmetric positive definite scaling matrix. We can also see this as ordinary
steepest descent, but steepest descent with respect to the adaptively-chosen
Mk Euclidean norms.

Positive definiteness of Mk guarantees that pk is a descent direction, i.e.

φ′(xk)pk = ∇φ(xk)
Tpk = −∇φ(xk)

TM−1
k ∇φ(xk) < 0;

this in turn guarantees that if αk is sufficiently small, φ(xk+1) will be less
than φ(xk) — unless φ(xk) is a stationary point (i.e. ∇φ(xk) = 0).

How does scaling improve on simple gradient descent? Consider again
the quadratic model problem

∇φ(x) = Ax+ b,

and let M and α be fixed. With a little work, we derive the error iteration

ek+1 = (I − αMA)ek

If αM = A−1, the iteration converges in a single step! Going beyond the
quadratic model problem, if x∗ was a known strong local minimizer, we could
use Mk = Hφ(x∗) – which will give us superlinear convergence.

The convergence of the scaled gradient descent iteration below is shown
in Figure 6.

let

x = [0.0; 0.5]

α=1.0

Scaled steepest descent loop -- plot where we're going

resids = []

xs = [copy(x)]

M = Hϕex([0; 0])

Bindel, Spring 2023 Numerical Analysis

Figure 6: Convergence of scaled gradient descent.

for k = 1:5

Compute the gradient and record the norm

g = M\∇ϕex(x)

push!(resids, norm(g))

Take a gradient descent step and record the point

x -= α*g

push!(xs, copy(x))

end

Plot the function and the iterates

plot_convergence((x,y)->ϕex([x; y]), xs, resids)

end

In general, we cannot scale with Hφ(x∗), since we don’t know the location
of x∗! But if Hφ(xk) is positive definite, we might choose Mk = Hφ(xk) —
which would correspond to a Newton step. Of course, Hφ(xk) does not
have to be positive definite everywhere! Thus, most minimization codes

Bindel, Spring 2023 Numerical Analysis

based on Newton scaling use Mk = Hφ(xk) when it is positive definite, and
otherwise use some modification. One possible modification is to choose a
diagonal shift Mk = Hφ(xk) + βI where β is sufficiently large to guarantee
positive definiteness. Another common approach is to compute a modified
Cholesky factorization of Hφ(xk). The modified Cholesky algorithm looks
like ordinary Cholesky, and is identical to ordinary Cholesky when Hφ(xk)
is positive definite. But rather than stopping when it encounters a negative
diagonal in a Schur complement, the modified Cholesky approach replaces
that element with something else and proceeds.

4.1 Questions
Suppose φ is a C2 function and Hφ is Lipschitz with constant M . Let x∗
be a strong local minimizer for φ and consider the scaled steepest descent
iteration

xk+1 = xk −Hφ(x∗)
−1∇φ(xk)

Subtract off the fixed point equation to get

ek+1 = ek −Hφ(x∗)
−1 (∇φ(x∗ + ek)−∇φ(x∗))

Conclude that for some ξ ∈ [0, 1],

‖ek+1‖ ≤ ‖Hφ(x∗)
−1 (Hφ(x∗)−Hφ(x∗ + ξek)) ek‖,

which implies under the Lipschitz assumption that

‖ek+1‖ ≤ ‖Hφ(x∗)
−1‖M‖ek‖2.

Therefore, the iteration converges quadratically for good enough initial guesses.
Can you also give a condition on ‖e0‖ that guarantees an initial guess is “good
enough”?

	Optimization essentials
	Questions

	Gradient descent
	``Steepest'' descent
	Scaled gradient descent
	Questions

