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Nonlinear equations and optimization
For the next month or so, we will be discussing methods for solving nonlinear
systems of equations and multivariate optimization problems. We will devote
most of our attention to four related problem classes:

f(x) = 0, f : Rn → Rn(1)
min
x

f(x), f : Rn → R(2)

min
x

‖f(x)‖2, f : Rn → Rm(3)

f(x(s), s) = 0, f : Rn ×R → Rn(4)

We treat these problems as a unified group because the solution methods
employ many of the same techniques, and insights gained from one problem
can be applied to another. For example:

• We can turn the nonlinear system problem (1) into a non-negative least
squares problem (3) problem by observing f(x) = 0 iff ‖f(x)‖2 = 0.

• The nonlinear least squares problem is a special case of the more general
unconstrained optimization problem (2). We consider it as a special
case because we can apply ideas for solving linear least squares problem
to the nonlinear case.

• For differentiable functions, the minima we seek in the optimization
problem (2) must occur at points where the gradient is zero, also known
as stationary points or critical points. We find these points by solving
a system of nonlinear equations.

• We might introduce parameter dependence (as in (4)) to understand
the physics of a problem or as a mechanism to “sneak up” on the
solution to otherwise hard problems.

In general, we will look to an optimization formulation as a way of judging
progress, even if we are solving nonlinear equations. But in constructing
algorithms, we will often look at things from the perspective of solving non-
linear systems of equations. Whatever approach we use, the numerical linear
algebra tools from the start of the semester will play a central role.
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Questions What are some linear or quadratic examples of each of the
classes of problems described above? How do we know how to solve these
simpler problems using methods from earlier in the class?

The big ideas
While we will see many technical tricks in the next month, I claim two as
fundamental:

Fixed point iterations All our nonlinear solvers will be iterative. We can
write most as fixed point iterations

(5) xk+1 = G(xk),

which we hope will converge to a fixed point, i.e. x∗ = G(x∗). We often
approach convergence analysis through the error iteration relating the error
ek = xk − x∗ at successive steps:

(6) ek+1 = G(x∗ + ek)−G(x∗).

We have already seen one example of this paradigm when we discussed sta-
tionary methods for solving linear systems and fixed point iterations in one
dimension.

Model-based methods Most nonlinear problems are too hard to solve di-
rectly. On the other hand, we can model hard nonlinear problems by simpler
(possibly linear) problems as a way of building iterative solvers. The most
common tactic — but not the only one! — is to approximate the nonlinear
function by a linear or quadratic function and apply all the things we know
about linear algebra.

If there is a third over-arching theme, it is understanding problem struc-
ture, whether to get good initial guesses for iterations, to obtain convergence
proofs for methods, or to understand whether a (possibly non-unique) solu-
tion to a nonlinear system of equations or optimization problem is the “right”
solution for the task at hand.
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Differential calculus: a refresher
We need a good foundation of multivariable differential calculus to construct
iterations and to understand their convergence. While you should have this
as background already, it is worth spending some time refreshing the concepts
and the notation.

From R to Rn

A lot of multivariable calculus involves applying concepts from calculus in
one variable, one direction at a time. Suppose f : Rn → Rm, and we want to
understand the behavior of f near x ∈ Rn. We reduce to a one-dimensional
problem by looking at the behavior along a direction 0 6= u ∈ Rn:

g(s) ≡ f(x+ su).

The directional derivative of f at x in the direction u is

∂f

∂u
(x) = g′(0) =

d

ds

∣∣∣∣
s=0

f(x+ su).

If we cannot compute directional derivatives explicitly, we may choose to
estimate them by a finite difference approximation, e.g.

∂f

∂u
(x) ≈ f(x+ hu)− f(x)

h

for sufficiently small h. If f is smooth enough, this formula has O(h) error.
The most frequently used directional derivatives are the derivatives in the
directions of the standard basis functions e1, . . . , en; these are the partial
derivatives ∂f/∂xj. We may also sometimes use the more compact notation
fi,j ≡ ∂fi/∂xj.

We can also compute higher-order derivatives

∂kf

∂uk
(x) = g(k)(0) =

dk

dsk

∣∣∣∣
s=0

f(x+ su),

or we can compute mixed directional derivatives by differentiating ∂f/∂u
in some new direction v. We say f ∈ Ck(Ω,Rm) for some Ω ⊂ Rn if all
directional derivatives of f (pure or mixed) up to order k exist and are
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continuous in Ω; or, equivalently, if all the partials up to order k exist and
are continuous in Ω. Sometimes the domain Ω is clear from context; in this
case, we will simply say that f “is Ck.” We say a function is C0 if it is
continuous.

If there are k + 1 continuous directional derivatives around x, we have
the Taylor expansion

f(x+ su) =
k∑

j=0

g(j)(0)

j!
sj +

g(k+1)(ξ)

(k + 1)!
sk+1

=
k∑

j=0

1

j!

∂jf

∂uj
(x)sj +

1

(k + 1)!

∂k+1f

∂uk+1
(x+ ξu)sk+1

where 0 ≤ ξ ≤ s is some intermediate point.

Questions If f : R → Rm is twice differentiable, then

‖[f(0) + f ′(0)s]− f(s)‖ ≤ s2

2

(
max
0≤ξ≤s

‖f ′′(ξ)‖
)
.

Why is this true? You can stick to the 2-norm if you want, though it is
true more generally. It may be useful to use the fact that in general ‖v‖ =
max‖u∗‖=1 u

∗v.

Derivatives and approximation
The function f is differentiable at x if there is a good affine (constant plus
linear) approximation

f(x+ z) = f(x) + f ′(x)z + o(‖z‖),

where the Jacobian f ′(x) (also writen J(x) or ∂f/∂x) is the m × n matrix
whose (i, j) entry is the partial derivative fi,j = ∂fi/∂xj. If f is differentiable,
the Jacobian matrix maps directions to directional derivatives, i.e.

∂f

∂u
(x) = f ′(x)u.

If f is C1 in some open neighborhood of x, it is automatically differentiable.
There are functions with directional derivatives that are not differentiable,
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but we will usually restrict our attention to C1 functions if we use differen-
tiability at all.

When multivariable calculus is taught to students without linear algebra
as a prerequisite or co-requisite, the chain rule sometimes seems bizarre and
difficult to remember. But once you think of derivatives as being about
affine approximation, it becomes much simpler. Suppose h = f ◦ g where
g : Rn → Rm and f : Rm → Rp. Let y = g(x), and consider first order
approximations of f and g at y and x, respectively:

f(y + z) = f(y) + f ′(y)z + o(‖z‖)
g(x+ w) = g(x) + g′(x)w + o(‖w‖)

Then letting z = g(x+ w)− g(x) = g′(x)w + o(‖w‖), we have

h(x+ w) = f(y) + f ′(y)(g′(x)w + o(‖w‖) + o(‖z‖)
= f(y) + f ′(y)g′(x)w + o(‖w‖)

Thus, we have h′(x) = f ′(y)g′(x); that is, the derivative of the composition
is the composition of the derivatives.

A nest of notations
A nice notational convention we have seen before, sometimes called varia-
tional notation (as in “calculus of variations”) is to write a relation between
a first order change to f and to x. If f is differentiable at x, we write this as

δf = f ′(x) δx

where δ should be interpreted as “first order change in.” In introductory
calculus classes, this is sometimes called a total derivative or total differential,
though there one usually uses d rather than δ. There is a good reason for
using δ in variational calculus, though, so that is typically what I do.

I like variational notation because I find it more compact than many of
the alternatives. For example, if f and g are both differentiable maps from
Rn to Rm and h = fTg, then I make fewer mistakes writing

δh = (δf)Tg + fT (δg), δf = f ′(x)δx, δg = g′(x)δx

than when I write
h′(x) = gTf ′(x) + fTg′(x)
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even though the the two are exactly the same. We could also write partial
derivatives using indicial notation, e.g.

h,k =
∑
i

(gifi,k + gi,kfi).

Similarly, I like to write the chain rule for h = f ◦g where composition makes
sense as

δh = f ′(g(x))δg, δg = g′(x)δx.

But you could also write

h′(x) = f ′(g(x))g′(x)

or
hi,k =

∑
j

fi,j(g(x))gj,k(x).

I favor variational notation, but switch to alternate notations when it seems
to simplify life (e.g. I often switch to indicial notation if I’m working with
computational mechanics). You may use any reasonably sensible notation
you want in your homework and projects, but should be aware that there is
more than one notation out there.

Lipschitz functions
A function f : Rn → Rm is Lipschitz with constant M on Ω ⊂ Rn if

∀x, y ∈ Ω, ‖f(x)− f(y)‖ ≤ M‖x− y‖.

Not every continuous function is Lipschitz; but if Ω is bounded and closed1,
then any function f ∈ C1(Ω,Rm) is Lipschitz with constant M = maxx∈Ω ‖f ′(x)‖.

Lipschitz constants will come up in several contexts when discussing con-
vergence of iterations. For example, if G : Ω → Ω is Lipschitz with some
constant less than one on Ω, we call it a contraction mapping, and we can
show that fixed point iterations with G will converge to a unique fixed point
in Ω. Lipschitz functions also give us a way to reason about approximation
quality; for example, if f ′(x) is Lipschitz with constant M on Ω containing

1A compact set, for those of you who have taken some analysis
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x, then we can tighten the usual asymptotic statement about linear approx-
imation of f : if the line segment from x to x+ z lives in Ω, then

f(x+ z) = f(x) + f ′(x)z + e(z), ‖e(z)‖ ≤ M

2
‖z‖2.

This also gives us a way to control the error in a finite difference approxima-
tion of ∂f/∂u, for example.

Questions

• Is x 7→
√
x Lipschitz on (0, 1)? On (1,∞)? If so, what are the Lipschitz

constants?

• Show that x 7→ |x| is Lipschitz on R with Lipschitz constant 1.

Quadratics and optimization
We now consider the case where f : Rn → R. If f is C1 on a neighborhood
of x, the derivative f ′(x) is a row vector, and we have

f(x+ z) = f(x) + f ′(x)z + o(‖z‖).

The gradient ∇f(x) = f ′(x) points in the direction of steepest ascent for the
affine approximation:

f(x+ su) = f(x) + f ′(x)u ≤ f(x) + ‖f ′(x)‖‖z‖

with equality iff z ∝ ∇f(x). Note that the gradient and the derivative are
not the same – one is a row vector, the other a column vector!

If f ′(x) is nonzero, there is always an ascent direction (∇f(x)) and a
descent direction (−∇f(x)) for f starting at x. Therefore, if f is C1 then
any minimum or maximum must be a stationary point or critical point where
f ′(x) = 0; equivalently, we could say a stationary point is where ∇f(x) = 0
or where every directional derivative is zero. This fact is sometimes known
as the first derivative test.

If f is a C2 function, we can write a second-order Taylor series

f(x+ z) = f(x) + f ′(x)z +
1

2
zTHz + o(‖z‖2)
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where H is the symmetric Hessian matrix whose (i, j) entry is the mixed
partial f,ij. We note in passing that if f ∈ C3, or even if f ∈ C2 and the
second derivatives of f are Lipschitz, then we have the stronger statement
that the error term in the expansion is O(‖z‖3).

If x is a stationary point then the first-order term in this expansion drops
out, leaving us with

f(x+ z) = f(x) +
1

2
zTHz + o(‖z‖2).

The function has a strong local minimum or maximum at x if the quadratic
part does, i.e. if H is positive definite or negative definite, respectively. If
H is strongly indefinite, with both positive and negative eigenvalues, then x
is a saddle point. This collection of facts is sometimes known as the second
derivative test.

Questions

• Consider the function

ρ(x, y) =
αx2 + 2βxy + γy2

x2 + y2
.

What equation characterizes the stationary points?

• Argue that the Hessian of ρ defined above is nowhere positive definite.


