
Bindel, Spring 2023 Numerical Analysis

2023-03-22

1 The best of all possible worlds
Last time, we discussed three methods of solving f(x) = 0: Newton, modified
Newton, and bisection. Newton is potentially faster than bisection; bisection
is more reliable. Ideally, we would like something that is both fast and robust.
We consider two different approaches to this problem: Brent’s method (1D),
and globalized Newton (which will generalize).

1.1 Newton with line search
One difficulty with Newton iteration is that sometimes the step is in the
right direction, but has the wrong magnitude. We can get around this with
a line search strategy: we propose a Newton step, but accept the step only
if it reduces |f(x)|. If |f(x)| goes up, we go in the same direction but by a
smaller amount; a typical choice is to cut the step in half. In code, we have
the following.

1 function newton_ls(f, df, x; ftol=1e-8, maxiter=100, monitor=(x)->nothing)
2 fx = f(x)
3 monitor(x)
4 iters = 0
5

6 # While not converged and budget remains
7 while abs(fx) > ftol && iters < maxiter
8

9 # Compute a Newton step
10 dx = fx/df(x)
11

12 # Try taking a full step, then half step, etc until
13 # improvement (though usually we insist on a little more than
14 # simple residual reduction in order to get better guarantees)�
15 = 1.0
16 xtrial = x
17 ftrial = fx
18 while iters < maxiter
19 xtrial = x�-*dx
20 ftrial = f(xtrial)
21 monitor(xtrial)
22 iters += 1�
23 /= 2

Bindel, Spring 2023 Numerical Analysis

24 abs(ftrial) > abs(fx) || break
25 end
26

27 # Accept the step and move on
28 x = xtrial
29 fx = ftrial
30 end
31

32 x, abs(fx) < ftol
33 end

Newton with line search converges more frequently than Newton with no
guards, but it can still go astray. There is nothing in the setup for a guarded
Newton iteration that guarantees the function f even has a zero; and even if
it does, it is possible to set up functions where Newton always heads in the
wrong direction. In order to go from “works better than Newton” to “works
all the time,” we need another trick.

1.2 Secant iteration and beyond
One of the annoying properties of Newton’s method is that it requires that we
compute the derivative of f . In some cases, we may not have this derivative
in closed form, but we can always estimate using finite differences:

f ′(x) ≈ f(x+ h)− f(x)

h
.

In the setting of a root finding iteration, it is natural to use a derivative
approximation based on the last two steps of the iteration; this gives us the
secant iteration

xk+1 = xk −
f(xk)(xk − xk−1)

f(xk)− f(xk−1)
.

The secant iteration is superlinearly convergent, though not quadratically
convergent1 Unlike Newton, we need two starting points for the iteration;
but if we start with an interval [a, b] such that f has a sign change, it is
natural to choose a and b as the initial guesses.

Unfortunately, secant iteration can also go astray. Fortunately, we can
combine secant iteration with bisection to get both speed and robustness.
The basic idea is:

1You can read the convergence theory elsewhere.

Bindel, Spring 2023 Numerical Analysis

• At each step, maintain an interval [α, β] such that f has a sign change
between the end points.

• If secant iteration is converging quickly, try taking a new point based
on a secant step.

• If the secant step falls out of bounds, or if secant iteration has not im-
proved the bounding interval sufficiently in the past few steps, consider
a new point based on a bisection step.

• Reduce the interval based on the sign of f at the new point (whether
from a bisection or a secant point) and repeat.

There are several methods of this flavor, where Brent’s method is perhaps
the best-known. Unfortunately, it is an intrinsically one-dimensional process
— there is no natural generalization with similar robustness properties for
solving systems of equations.

Use a routine, or roll your own?
The Julia functions find_zero and fzero in the Roots package include sev-
eral fast, reliable black-box root-finding algorithms based on a combination
of bisection (for safety) and interpolation-based methods (for speed). If you
provide an initial interval containing exactly one zero, and if the root you
seek is not too sensitive, these routines will find the root you seek to high
accuracy.

That said, there are a few reasons to write your own root-finding algo-
rithms, at least some of the time:

1. Not all the world is Julia, and you may sometimes find that you have
to write these things yourself.

2. Black box approaches are far less useful for problems involving multiple
variables. Consequently, it’s worth learning to write Newton-like meth-
ods in one variable so that you can learn their properties well enough
to work with similar algorithms in more than one variable.

3. Actually walking through the internals of a root-finding algorithm can
be a terrific way to gain insight into how to formulate your problems
so that a standard root finder can solve them.

Bindel, Spring 2023 Numerical Analysis

Sensitivity and error
Suppose we want to find x∗ such that f(x∗) = 0. On the computer, we
actually have f̂(x̂∗) = 0. We’ll assume that we’re using a nice, robust code
like fzero, so we have a very accurate zero of f̂ . But this still leaves the
question: how well do x̂∗ and x∗ approximate each other? In other words,
we want to know the sensitivity of the root-finding problem.

If x̂∗ ≈ x∗, then
f(x̂∗) ≈ f ′(x∗)(x̂∗ − x∗).

Using the fact that f̂(x̂∗) = 0, we have that if |f̂ − f | < δ for arguments near
x∗, then

|f ′(x∗)(x̂∗ − x∗)| . δ.

This in turn gives us
|x̂∗ − x∗| .

δ

f ′(x∗)
.

Thus, if f ′(x∗) is close to zero, small rounding errors in the evaluation of f
may lead to large errors in the computed root.

It’s worth noting that if f ′(x∗) = 0 (i.e. if x∗ is a multiple root), that
doesn’t mean that x∗ is completely untrustworthy. It just means that we
need to take more terms in a Taylor series in order to understand the local
behavior. In the case f ′(x∗) = 0, we have

f(x̂∗) ≈
1

2
f ′′(x∗)(x̂∗ − x̂∗),

and so we have

|x̂∗ − x̂∗| ≤

√
2δ

f ′′(x∗)
.

So if the second derivative is well behaved and δ is on the order of around
10−16, for example, our computed x̂ might be accurate to within an absolute
error of around 10−8.

Understanding the sensitivity of root finding is not only important so that
we can be appropriately grim when someone asks for impossible accuracy.
It’s also important because it helps us choose problem formulations for which
it is (relatively) easy to get good accuracy.

Bindel, Spring 2023 Numerical Analysis

Choice of functions and variables
Root-finding problems are hard or easy depending on how they are posed.
Often, the initial problem formulation is not the most convenient. For ex-
ample, consider the problem of finding the positive root of

f(x) = (x+ 1)(x− 1)8 − 10−8.

This function is terrifyingly uninformative for values close to 1. Newton’s
iteration is based on the assumption that a local, linear approximation pro-
vides a good estimate of the behavior of a function. In this problem, a linear
approximation is terrible. Fortunately, the function

g(x) = (x+ 1)1/8(x− 1)− 10−1

has the same root, which is very nicely behaved.
There are a few standard tricks to make root-finding problems easier:

• Scale the function. If f(x) has a zero at x∗, so does f(x)g(x); and
sometimes we can analytically choose a scaling function to make the
root finding problem easier.

• Otherwise transform the function. For example, in computational
statistics, one frequently would like to maximize a likelihood function

L(θ) =
n∏

j=1

f(xj; θ)

where f(x; θ) is a probability density that depends on some parameter
θ. One way to do this would be find zeros of L′(θ), but this often leads
to scaling problems (potential underflow) and other numerical discom-
forts. The standard trick is to instead maximize the log-likelihood
function

`(θ) =
n∑

j=1

log f(xj; θ),

often using a root finder for `′(θ). This tends to be a much more
convenient form, both for analysis and for computation.

Bindel, Spring 2023 Numerical Analysis

• Change variables. A good rule of thumb is to pick variables that
are naturally dimensionless2 For difficult problems, these dimension-
less variables are often very small or very large, and that fact can be
used to simplify the process of coming up with good initial guesses for
Newton iteration.

Starting points
All root-finding software requires either an initial guess at the solution or an
initial interval that contains the solution. This sometimes calls for a little
cleverness, but there are a few standard tricks:

• If you know where the problem comes from, you may be able to get
a good estimate (or bounds) by “application reasoning.” This is often
the case in physical problems, for example: you can guess the order
of magnitude of an answer because it corresponds to some physical
quantity that you know about.

• Crude estimates are often fine for getting upper and lower bounds. For
example, we know that for all x > 0,

log(x) ≤ x− 1

and for all x ≥ 1, log(x) > 0. So if I wanted to x+log(x) = c for c > 1,
I know that c should fall between x and 2x− 1, and that gives me an
initial interval. Alternatively, if I know that g(z) = 0 has a solution
close to 0, I might try Taylor expanding g about zero – including higher
order terms if needed – in order to get an initial guess for z.

• Sometimes, it’s easier to find local minima and maxima than to find
zeros. Between any pair of local minima and maxima, functions are
either monotonically increasing or monotonically decreasing, so there is
either exactly one root in between (in which case there is a sign change
between the local min and max) or there are zero roots between (in
which case there is no sign change). This can be a terrific way to start
bisection.

2Those of you who are interested in applied mathematics more generally should look
up the Buckingham Pi Theorem — it’s a tremendously useful thing to know about.

Bindel, Spring 2023 Numerical Analysis

Problems to ponder
1. Analyze the convergence of the fixed point iteration

xk+1 = c− log(xk).

What is the equation for the fixed point? Under what conditions will
the iteration converge with a good initial guess, and at what rate will
the convergence occur?

2. Repeat the previous exercise for the iteration xk+1 = 10− exp(xk).

3. Analyze the convergence of Newton’s iteration on the equation x2 = 0,
where x0 = 0.1. How many iterations will it take to get to a number
less than 10−16?

4. Analyze the convergence of the fixed point iteration xk+1 = xk−sin(xk)
for xk near zero. Starting from x = 0.1, how many iterations will it
take to get to a number less than 10−16?

5. Consider the cubic equation

x3 − 2x+ c = 0.

Describe a general purpose strategy for finding all the real roots of this
equation for a given c.

6. Suppose we have some small number of samples X1, . . . , Xm drawn
from a Cauchy distribution with parameter θ (for which the pdf is)

f(x, θ) =
1

π

1

1 + (x− θ)2
.

The maximum likelihood estimate for θ is the function that maximizes

L(θ) =
m∏
j=1

f(Xj, θ).

Usually, one instead maximizes l(θ) = logL(θ) — why would this make
sense numerically? Derive a MATLAB function to find the maximum
likelihood estimate for θ by finding an appropriate solution to the equa-
tion l′(θ) = 0.

Bindel, Spring 2023 Numerical Analysis

7. The Darcy friction coefficient f for turbulent flow in a pipe is defined
in terms of the Colebrook-White equation for large Reynolds number
Re (greater than 4000 or so):

1√
f
= −2 log10

(
ε/Dh

3.7
+

2.51

Re
√
f

)
Here ε is the height of the surface roughness and Dh is the diameter
of the pipe. For a 10 cm pipe with 0.1 mm surface roughness, find f
for Reynolds numbers of 104, 105, and 106. Ideally, you should use a
Newton iteration with a good initial guess.

8. A cable with density of 0.52 lb/ft is suspended between towers of equal
height that are 500 ft apart. If the wire sags by 50 ft in between, find
the maximum tension T in the wire. The relevant equations are

c+ 50 = c cosh

(
500

2c

)
T = 0.52(c+ 50)

Ideally, you should use a Newton iteration with a good initial guess.

	The best of all possible worlds
	Newton with line search
	Secant iteration and beyond

