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1 Linear Solves and Quadratic Minimization
We have already briefly described an argument that Jacobi iteration con-
verges for strictly row diagonally dominant matrices. We now discuss an ar-
gument that Gauss-Seidel converges (or at least part of such an argument).
In the process, we will see a useful way of reformulating the solution of sym-
metric positive definite linear systems that will prepare us for our upcoming
discussion of conjugate gradient methods.

Let A be a symmetric positive definite matrix, and consider the “energy”
function

φ(x) =
1

2
xTAx− xT b.

The stationary point for this function is the point at which the derivative in
any direction is zero. That is, for any direction vector u,

0 =
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dε
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uTAx+
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2
xTAu− uT b

= uT (Ax− b)

Except in pathological instances, a directional derivative can be written as
the dot product of a direction vector and a gradient; in this case, we have

∇φ = Ax− b.

Hence, minimizing φ is equivalent to solving Ax = b 1.
Now that we have a characterization of the solution of Ax = b in terms

of an optimization problem, what can we do with it? One simple approach
is to think of a sweep through all the unknowns, adjusting each variable in
term to minimize the energy; that is, we compute a correction ∆xj to node
j such that

∆xj = argminz φ(x+ zej)

1If you are unconvinced that this is a minimum, work through the algebra to show that
φ(A−1b+ w) = 1

2w
TAw for any w.
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Note that
d

dz
φ(x+ zej) = eTj (A(x+ zej)− b),

and the update xj := xj +∆xj is equivalent to choosing a new xj to set this
derivative equal to zero. But this is exactly what the Gauss-Seidel update
does! Hence, we can see Gauss-Seidel in two different ways: as a stationary
method for solving a linear system, or as an optimization method that con-
stantly makes progress toward a solution that minimizes the energy 2. The
latter perspective can be turned (with a little work) into a convergence proof
for Gauss-Seidel on positive-definite linear systems.

2 Extrapolation: A Hint of Things to Come
Stationary iterations are simple. Methods like Jacobi or Gauss-Seidel are
easy to program, and it’s (relatively) easy to analyze their convergence. But
these methods are also often slow. We’ll talk next time about more powerful
Krylov subspace methods that use stationary iterations as a building block.

There are many ways to motivate Krylov subspace methods. We’ll pick
one motivating idea that extends beyond the land of linear solvers and into
other applications as well. The key to this idea is the observation that the
error in our iteration follows a simple pattern:

x(k) − x = e(k) = Rke(0), R = M−1N.

Suppose R is diagonalizable, i.e. R = V ΛV −1, and let V −1e(0) = c. Then we
have

e(k) = V ΛkV −1e(0) = V Λkc =
n∑

j=1

vjλ
k
j cj.

Assuming there is a unique dominant eigenvalue, the behavior of the error is
dominated by that eigenvalue for large k, i.e.

e(k+1) ≈ λ1e
(k).

Note that this means

x(k+1) − x(k) = e(k+1) − e(k) ≈ (λ1 − 1)e(k).

2Later in the class, we’ll see this as coordinate-descent with exact line search.
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If we have an estimate for λ1, we can write

x = x(k) − e(k) ≈ x(k) − x(k+1) − x(k)

λ1 − 1
.

That is, we might hope to get a better estimate of x than is provided by x(k)

or x(k+1) individually by taking an appropriate linear combination of x(k) and
x(k+1).

How might we get an estimate for λ1? In some cases, we might be able
to guess a good estimate from other context. Otherwise, though, we might
estimate λ1 via a Rayleigh quotient. Let u(k+1) = x(k+1)−x(k); we know from
our iteration equation that u(k+1) = Ru(k), so we might try to use Rayleigh
quotients to estimate λ1:

ρR(u
(k)) =

u(k) ·Ru(k)

‖u(k)‖2
=

u(k) · u(k+1)

‖u(k)‖2
.

Plugging this into our estimate for the error correction gives us a transformed
sequence

x̌(k) = x(k) − u(k)

ρR(u(k))− 1
,

which generally converges to the true solution faster than the original se-
quence converged.

This idea generalizes: if we have a sequence of approximations x(0), . . . , x(k),
why not ask for the “best” approximation that can be written as a linear com-
bination of the x(j)? This is the notion underlying Krylov methods, which
we will discuss next time.

3 An Aside on Extrapolation
Many students are only exposed to extrapolation methods as a trick or an
aside in a numerical methods course. This really does not do justice to a
family of methods with a deep history and connections across the breadth of
mathematics. Extrapolation methods are not only a sometimes-miraculous-
seeming tool in numerics, but they are intimately connected to continued
fractions and rational approximation (itself an under-studied area in modern
times!), to questions in number theory (e.g. the proofs that e and π are tran-
scendental), to time series analysis, to filtering and signal processing, and
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to many other pure and applied topics. They have been re-invented repeat-
edly across areas and cultures. Recent literature often names the methods
after 20th-century mathematicians, but the ideas go back at least to the 17th
century, and not just in Europe (what is now called Aitken’s delta-squared
process was known to 17th century Japanese mathematics as a way of accel-
erating series converging to π). I really like the historical survey by Brezinski
for some of these connections and background.

The earliest extrapolation methods were seen as sequence transforma-
tions, converting one sequence into another sequence with faster convergence.
Indeed, sometimes these methods convert divergent sequences into conver-
gent ones, giving us the notion of an “anti-limit!” But I like to think of a
hierarchy of methods that one can use depending on how much additional
context one has:

• Standard extrapolation methods convert one sequence x1, x2, . . . to a
new sequence x̌1, x̌2, . . . that converges more quickly. The transfor-
mation usually involves a model for the error that is fit to successive
entries in the original sequence. But otherwise, we don’t explicitly use
anything about how the sequence is generated.

• Acceleration or mixing procedures (like Anderson acceleration or Pu-
lay mixing) explicitly assume that we have a fixed point iteration
x(k+1) = G(x(k)) with a known function G. Unlike more general se-
quence extrapolation methods, these methods apply G as part of the
computation of the new sequence.

• Other methods, including the Krylov subspace methods that we are
about to describe, are posed in terms of approximately solving a system
of equations F (x) = 0 or minimizing some objective function φ(x).
These methods construct a space of possible approximations from linear
combinations of the iterates of another method, and then use some
ansatz to choose the “best possible” approximation from that space.
This “best possible” approximation might be one that minimizes some
residual error ‖F (x)‖ over the subspace, or it might minimize φ(x), or
it might satisfy some other condition.

Methods that use more detailed knowledge of a system of equations or
optimization problem we want to solve are less general than some of the
classical methods – they aren’t going to help us at all if we want to accelerate

https://doi.org/10.1016/0168-9274(95)00110-7
https://epubs.siam.org/doi/10.1137/10078356X
https://en.wikipedia.org/wiki/DIIS
https://en.wikipedia.org/wiki/DIIS
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a sequence converging to π! But they also tend to be less numerically delicate
than standard extrapolation measure, which my their nature often involve a
lot of cancellation effects in order to estimate errors from successive steps.
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