
Bindel, Spring 2023 Numerical Analysis

2023-03-09 – 2023-03-11

1 Orthogonal iteration to QR
The QR iteration is the workhorse for solving the nonsymmetric eigenvalue
problem. Unfortunately, while the iteration itself is simple to write, the
derivation sometimes appears to be a work of black magic. In fact, the QR
iteration is essentially the subspace iteration we have already seen, re-cast in
a different form.

1. The orthogonal iteration Q(k+1)R(k) = AQ(k) is a generalization of the
power method. In fact, the first column of this iteration is exactly the
power iteration. In general, the first p columns of Q(k) are converging
to an orthonormal basis for a p-dimensional invariant subspace associ-
ated with the p eigenvalues of A with largest modulus (assuming that
there aren’t several eigenvalues with the same modulus to make this
ambiguous).

2. If all the eigenvalues have different modulus, orthogonal iteration ulti-
mately converges to the orthogonal factor in a Schur form

AU = UT

What about the T factor? Note that T = U∗AU , so a natural approx-
imation to T at step k would be

A(k) = (Q(k))∗AQ(k),

and from the definition of the subspace iteration, we have

A(k) = (Q(k))∗Q(k+1)R(k) = Q(k)R(k),

where Q(k) ≡ (Q(k))∗Q(k+1) is unitary.

3. Note that

A(k+1) = (Q(k+1))∗A(k)Q(k+1) = (Q(k))∗A(k)Q(k) = R(k)Q(k).



Bindel, Spring 2023 Numerical Analysis

Thus, we can go from A(k) to A(k+1) directly without the orthogonal
factors from subspace iteration, simply by computing

A(k) = Q(k)R(k)

A(k+1) = R(k)Q(k).

This is the QR iteration.

2 Practical problems
There are two major problems with the basic QR iteration:

1. Each step of the QR iteration requires a QR factorization, which is an
O(n3) operation. This is rather expensive, and even in the happy case
where we might be able to get each eigenvalue with a constant number
of steps, O(n) total steps at a cost of O(n3) each gives us an O(n4)
algorithm. Given that everything else we have done so far costs only
O(n3), an O(n4) cost for eigenvalue computation seems excessive.

2. Like the power iteration upon which it is based, the basic iteration con-
verges linearly, and the rate of convergence is related to the ratios of
the moduli of eigenvalues. Convergence is slow when there are eigen-
values of nearly the same modulus, and nonexistent when there are
eigenvalues with the same modulus.

The latter problem is dealt with by introducting shifts into QR, much like
we did with inverse iteration. It is an interesting topic, but not one we will
take up here. Instead, we will focus on the first problem, which leads us to
several interesting intermediate factorizations.

3 Woah, We’re Halfway There
The QR iteration maps upper Hessenberg matrices to upper Hessenberg ma-
trices, and this fact allows us to do one QR sweep in O(n2) time. So how do
we reduce to upper Hessenberg in the first place? Or, for that matter, to to



Bindel, Spring 2023 Numerical Analysis

other “halfway there” forms:

A = QHQT where Q is orthogonal and H upper Hessenberg
A = QTQT where Q is orthogonal, T symmetric tridiagonal, and A symmetric
A = UBV T where U and V are orthogonal and B is upper bidiagonal

Unlike the SVD or various eigendecompositions, these forms can be computed
directly. And in many cases, as we will discuss, they are just as useful!

4 Hessenberg via Householder
Let’s start with an over-ambitious goal1: can we directly compute the Schur
form by applying Householder transformations on the left and right of a
matrix? We already secretly know that the answer is no, but trying and
failing will set us up neatly for computing a Hessenberg form — and for
understanding why the Hessenberg form is in fact a natural target. A matrix
H is upper Hessenberg if it has nonzeros only in the upper triangle and the
first subdiagonal. For example, the nonzero structure of a 5-by-5 Hessenberg
matrix is 

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 .

For any square matrix A, we can find a unitarily similar Hessenberg matrix
H = Q∗AQ in O(n3) time (a topic for next time). Because H is similar to A,
they have the same eigenvalues; but as it turns out, the special structure of
the Hessenberg matrix makes it possible to run QR in O(n2) per iteration.

How might we go about trying to compute a Schur form directly? A
natural first step is to apply an orthogonal transformation from the left
in order to introduce zeros in the first column, and then apply the same
transformation on the right. Let’s try this for the 4 × 4 matrix case (we’ll
mark with a star each nonzero element that is updated by the previous

1Ah, but a man’s reach should exceed his grasp...



Bindel, Spring 2023 Numerical Analysis

transformation):
× × × ×
× × × ×
× × × ×
× × × ×

 7→


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 7→


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

Oops! Applying the transformation from the right scrambles the columns,
and undoes the zeros we started just introduced. The problem is that we
got too greedy. What if instead of trying to zero out everything below the
diagonal, we instead zero out everything below the first subdiagonal? Then
we affect rows 2 through n, and a subsequent transform affecting columns 2
through n does not kill the zeros we introduced:

× × × ×
× × × ×
× × × ×
× × × ×

 7→


× × × ×
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 7→


× ∗ ∗ ∗
× ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .

A second step to introduce zeros in the second column finishes the reduction
to Hessenberg form:

× × × ×
× × × ×
× × × ×
× × × ×

 7→


× × × ×
× × × ×
0 ∗ ∗ ∗
0 0 ∗ ∗

 7→


× × ∗ ∗
× × ∗ ∗
0 × ∗ ∗
0 0 ∗ ∗

 .

Let’s make this concrete:
1 function my_hessenberg(A)
2 H = copy(A)
3 n = size(A)[1]
4 Q = Matrix{Float64}(I,n,n)
5

6 for j = 1:n-2
7 u = householder(H[j+1:n,j])
8 H[j+1:n,j:n] -= 2*u*(u'*H[j+1:n,j:n])
9 H[j+2:n,j] .= 0.0

10 H[:,j+1:n] -= 2*(H[:,j+1:n]*u)*u'
11 Q[:,j+1:n] -= 2*(Q[:,j+1:n]*u)*u'
12 end
13

14 Q, H
15 end



Bindel, Spring 2023 Numerical Analysis

5 Hessenberg matrices and O(n2) QR steps
The special structure of the Hessenberg matrix makes the Householder QR
routine very economical. The Householder reflection computed in order to
introduce a zero in the (j + 1, j) entry needs only to operate on rows j and
j + 1. Therefore, we have

Q∗H = Wn−1Wn−2 . . .W1H = R,

where Wj is a Householder reflection that operates only on rows j and j+1.
Computing R costs O(n2) time, since each Wj only affects two rows (O(n)
data). Now, note that

RQ = R(W1W2 . . .Wn−1);

that is, RQ is computed by an operation that first mixes the first two
columns, then the second two columns, and so on. The only subdiagonal
entries that can be introduced in this process lie on the first subdiagonal,
and so RQ is again a Hessenberg matrix. Therefore, one step of QR iter-
ation on a Hessenberg matrix results in another Hessenberg matrix, and a
Hessenberg QR iteration step can be performed in O(n2) time.

As it happens, the Hessenberg QR step can be written in terms of bulge
chasing. The picture (in the 5-by-5 case) is as follows. We start with the
original Hessemberg matrix, and first apply an orthogonal transformation
(the first in a QR factorization) to the first two rows and then symmetrically
to the first two columns. This introduces a nonzero (a “bulge”) in the (3, 1)
position. Marking the elements modified in the first step with a star, we
have: 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ × × ×

× × ×
× ×

 .

From here, our goal is to “chase” the bulge out of the Hessenberg structure.
We start by applying an orthogonal transformation to rows 2 and 3 to remove
the (3, 1) element; applying the same transformation to columns 2 and 3
introduces a bulge element in the (4, 2) position; marking the newly modified



Bindel, Spring 2023 Numerical Analysis

elements with stars, we have the new structure
× ∗ ∗ × ×
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

∗ ∗ × ×
× ×

 .

Continuing for two more step in a similar fashion, we have a nonzero in the
(5, 3) position, and then can restore the structure the rest of the way to a
Hessenberg form.

6 Terrific Tridiagonals and Busy Bidiagonals
When A is a symmetric matrix, the corresponding Hessenberg form is sym-
metric as well. This means that all the entries below the first subdiagonal
are zero (by upper Hessenberg structure), and so are all the entries above
the first superdiagonal (by symmetry).

What about bidiagonalization? In bidiagonalization, we again interleave
transformations on the left and right, but now we allow ourselves to use
different transformations. The key is that we want to keep introducing new
zero elements through these transformations without destroying zeros we
already created. In the 4× 4 case, the first two steps look like

× × × ×
× × × ×
× × × ×
× × × ×

 7→


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 7→


× ∗ 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


The code is

1 function my_bidiagonalization(A)
2 B = copy(A)
3 n = size(A)[1]
4 U = Matrix{Float64}(I,n,n)
5 V = Matrix{Float64}(I,n,n)
6

7 for j = 1:n-1
8

9 # Transform from the left to introduce zeros in column j
10 u = householder(B[j:n,j])



Bindel, Spring 2023 Numerical Analysis

11 B[j:n,j:n] -= 2*u*(u'*B[j:n,j:n])
12 B[j+1:n,j] .= 0.0
13 U[:,j:n] -= 2*(U[:,j:n]*u)*u'
14

15 # Transform from the right to introduce zeros in row j
16 v = householder(B[j,j+1:n])
17 B[j:n,j+1:n] -= 2*(B[j:n,j+1:n]*v)*v'
18 B[j,j+2:n] .= 0.0
19 V[:,j+1:n] -= 2*(V[:,j+1:n]*v)*v'
20

21 end
22

23 B, U, V
24 end

7 Using the Factorizations
Let’s look concretely at two cases where these factorizations are useful. The
first is in computing transfer functions that occur in control theory, where
we have the form

T (s) = cT (sI − A)−1b+ d

for various values of s. Naively, it looks like we might have to spend O(n3)
per value of s where we want the transfer function; but we can instead use
the Hessenberg reduction A = QHQT to get

T (s) = (cTQ)(sI −H)−1(QT b) + d

Solving a Hessenberg linear system like (sI −H) can be done in O(n2) time
rather than O(n3) time (why?); in fact, this is one of the structures that
MATLAB’s sparse solver checks for.

A second application again deals with parameter-dependent systems, but
in a different setting. Suppose A = UBV T is a bidiagonal reduction of A, and
we are interested in computing the Tikhonov-regularized solution for different
values of the regularization parameter. How can we do this efficiently? Note
that ∥∥∥∥[AλI

]
x−

[
b
0

]∥∥∥∥ =

∥∥∥∥[BλI
]
(V Tx)−

[
UT b
0

]∥∥∥∥
The latter equations can be reduced back to bidiagonal form in O(n) time
(left as an exercise for the student!). Therefore, after the initial bidiagonal



Bindel, Spring 2023 Numerical Analysis

reduction, we can solve the least squares problem for each new value of the
regularization parameter λ in O(n) additional work.

8 Enter Arnoldi
When we discussed QR factorization, we started with Gram-Schmidt and
then moved to the Householder-based method. In talking about reduction
to Hessenberg form, we started with the Householder approach — but there
is something akin to Gram-Schmidt as well. We can read the basic idea by
looking at the columns of the Hessenberg matrix equation AQ = QH:

Aqj =

j∑
k=1

qjhjk + hj,j+1qj+1.

Rearranging, we have

qj+1 =
1

hj,j+1

(
Aqj −

j∑
k=1

qkhkj

)

where hkj = qTk Aqj. That is, the coefficients H can be exactly derived
from using Gram-Schmidt orthgonalization to orthonormalize Aqj against
{q1, . . . , qj} for each successive j!

The beauty about using the Arnoldi procedure to reduce a matrix to
upper Hessenberg form is two fold: we can readily apply the method to sparse
matrices; and we can stop early!. This latter fact is true of the Householder-
based methods as well. But in the case of the Arnoldi procedure, we will
end up making use of partial Hessenberg reduction to turn Arnoldi into a
method of approximating linear system solutions (GMRES) and a method
of approximating eigenpairs for large systems (the Arnoldi method).

When A is symmetric, the Arnoldi procedure becomes the Lanczos pro-
cedure. Note that in this case, we tridiagonalize the original matrix, which
means at each step we need (in exact arithmetic) to orthogonalize each suc-
cessive Aqj against only two other vectors. This rather remarkable fact allows
us to parley the Lanczos iteration into an eigenvalue iteration as well as two
truly remarkable iterations for solving linear systems: MINRES and the fa-
mous method of conjugate gradients (CG). We will return to these methods
later.


	Orthogonal iteration to QR
	Practical problems
	Woah, We're Halfway There
	Hessenberg via Householder
	Hessenberg matrices and O(n2) QR steps
	Terrific Tridiagonals and Busy Bidiagonals
	Using the Factorizations
	Enter Arnoldi

