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1 Least squares: the big idea
Least squares problems are a special sort of minimization problem. Suppose
A ∈ Rm×n where m > n. In general, we cannot solve the overdetermined
system Ax = b; the best we can do is minimize the residual r = b − Ax. In
the least squares problem, we minimize the two norm of the residual:

Find x to minimize ‖r‖22 = 〈r, r〉.

This is not the only way to approximately solve the system, but it is attractive
for several reasons:

1. It’s mathematically attractive: the solution of the least squares prob-
lem is x = A†b where A† is the Moore-Penrose pseudoinverse of A.

2. There’s a nice picture that goes with it — the least squares solution is
the projection of b onto the range of A, and the residual at the least
squares solution is orthogonal to the range of A.

3. It’s a mathematically reasonable choice in statistical settings when the
data vector b is contaminated by Gaussian noise.

Cricket chirps: an example
Did you know that you can estimate the temperature by listening to the
rate of chirps? The data set in Table 11. represents measurements of the
number of chirps (over 15 seconds) of a striped ground cricket at different
temperatures measured in degrees Farenheit. A plot (Figure 1) shows that
the two are roughly correlated: the higher the temperature, the faster the
crickets chirp. We can quantify this by attempting to fit a linear model

temperature = α · chirps + beta + ε

where ε is an error term. To solve this problem by linear regression, we
minimize the residual

r = b− Ax

1Data set originally attributed to http://mste.illinois.edu

http://mste.illinois.edu
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Figure 1: Cricket chirps vs. temperature and a model fit via linear regression.

where

bi = temperature in experiment i

Ai1 = chirps in experiment i

Ai2 = 1

x =

[
α
β

]
Julia is capable of solving least squares problems using the backslash oper-
ator; that is, if chirps and temp are column vectors in Julia, we can solve
this regression problem as

1 A = [chirps ones(ndata)]
2 x = A\temp

The algorithms underlying that backslash operation will make up most of
the next lecture.

In more complex examples, we want to fit a model involving more than
two variables. This still leads to a linear least squares problem, but one in
which A may have more than one or two columns. As we will see later in
the semester, we also use linear least squares problems as a building block
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Chirp 20 16 20 18 17 16 15 17 15 16 15 17 16 17 14
Temp 89 72 93 84 81 75 70 82 69 83 80 83 81 84 76

Table 1: Cricket data: Chirp count over a 15 second period vs. temperature
in degrees Farenheit.
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Figure 2: Picture of a linear least squares problem. The vector Ax is the clos-
est vector in R(A) to a target vector b in the Euclidean norm. Consequently,
the residual r = b− Ax is normal (orthogonal) to R(A).

for more complex fitting procedures, including fitting nonlinear models and
models with more complicated objective functions.

2 Normal equations
When we minimize the Euclidean norm of r = b − Ax, we find that r is
normal to everything in the range space of A (Figure 2):

b− Ax ⊥ R(A),

or, equivalently, for all z ∈ Rn we have

0 = (Az)T (b− Ax) = zT (AT b− ATAx).

The statement that the residual is orthogonal to everything in R(A) thus
leads to the normal equations

ATAx = AT b.

To see why this is the right system, suppose x satisfies the normal equations
and let y ∈ Rn be arbitrary. Using the fact that r ⊥ Ay and the Pythagorean
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theorem, we have

‖b− A(x+ y)‖2 = ‖r − Ay‖2 = ‖r‖2 + ‖Ay‖2 > 0.

The inequality is strict if Ay 6= 0; and if the columns of A are linearly
independent, Ay = 0 is equivalent to y = 0.

We can also reach the normal equations by calculus. Define the least
squares objective function:

F (x) = ‖Ax− b‖2 = (Ax− b)T (Ax− b) = xTATAx− 2xTAT b+ bT b.

The minimum occurs at a stationary point; that is, for any perturbation δx
to x we have

δF = 2δxT (ATAx− AT b) = 0;

equivalently, ∇F (x) = 2(ATAx− AT b) = 0 — the normal equations again!

3 A family of factorizations

3.1 Cholesky
If A is full rank, then ATA is symmetric and positive definite matrix, and we
can compute a Cholesky factorization of ATA:

ATA = RTR.

The solution to the least squares problem is then

x = (ATA)−1AT b = R−1R−TAT b,

or, in Juliaa world
1 AC = cholesky(A'*A)
2 x = AC\(A'*b) # Using the factorization object, OR
3 x = AC.U\(AC.U'\(A'*b))

3.2 Economy QR
The Cholesky factor R appears in a different setting as well. Let us write
A = QR where Q = AR−1; then

QTQ = R−TATAR−1 = R−TRTRR−1 = I.
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That is, Q is a matrix with orthonormal columns. This “economy QR fac-
torization” can be computed in several different ways, including one that
you have seen before in a different guise (the Gram-Schmidt process). Julia
provides a numerically stable method to compute the QR factorization via

1 AC = qr(A)

and we can use the QR factorization directly to solve the least squares prob-
lem without forming ATA by

1 AC = qr(A,0)
2 x = AC\b # Using the factorization object, OR
3 x = AC.R\((AC.Q'*b)[1:m])

3.3 Full QR
There is an alternate “full” QR decomposition where we write

A = QR, where Q =
[
Q1 Q2

]
∈ Rm×m, R =

[
R1

0

]
∈ Rm×n.

To see how this connects to the least squares problem, recall that the Eu-
clidean norm is invariant under orthogonal transformations, so

‖r‖2 = ‖QT r‖2 =
∥∥∥∥[QT

1 b
QT

2 b

]
−
[
R1

0

]
x

∥∥∥∥2

= ‖QT
1 b−R1x‖2 + ‖QT

2 b‖2.

We can set ‖QT
1 v − R1x‖2 to zero by setting x = R−1

1 QT
1 b; the result is

‖r‖2 = ‖QT
2 b‖2.

The actual thing computed by Julia is a sort of hybrid of the full and
economy decompositions. The data structure representing Q (in compressed
form) can reconstruct the full orthogonal matrix; but the R factor is stored
as in the economy form.

3.4 SVD
The full QR decomposition is useful because orthogonal transformations do
not change lengths. Hence, the QR factorization lets us change to a coordi-
nate system where the problem is simple without changing the problem in
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any fundamental way. The same is true of the SVD, which we write as

A =
[
U1 U2

] [Σ
0

]
V T Full SVD

= U1ΣV
T Economy SVD.

As with the QR factorization, we can apply an orthogonal transformation
involving the factor U that makes the least squares residual norm simple:

‖UT r‖2 =
∥∥∥∥[UT

1 b
UT
2 b

]
−

[
ΣV T

0

]
x

∥∥∥∥ = ‖UT
1 b− ΣV Tx‖2 + ‖UT

2 b‖2,

and we can minimize by setting x = V Σ−1UT
1 b.

4 The Moore-Penrose pseudoinverse
If A is full rank, then ATA is symmetric and positive definite matrix, and
the normal equations have a unique solution

x = A†b where A† = (ATA)−1AT .

The matrix A† ∈ Rn×m is the Moore-Penrose pseudoinverse. We can also
write A† via the economy QR and SVD factorizations as

A† = R−1QT
1 ,

A† = V Σ−1UT
1 .

If m = n, the pseudoinverse and the inverse are the same. For m > n, the
Moore-Penrose pseudoinverse has the property that

A†A = I;

and
Π = AA† = Q1Q

T
1 = U1U

T
1

is the orthogonal projector that maps each vector to the closest vector (in the
Euclidean norm) in the range space of A.
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5 The good, the bad, and the ugly
At a high level, there are two pieces to solving a least squares problem:

1. Project b onto the span of A.

2. Solve a linear system so that Ax equals the projected b.

Consequently, there are two ways we can get into trouble in solving least
squares problems: either b may be nearly orthogonal to the span of A, or the
linear system might be ill conditioned.

Let’s first consider the issue of b nearly orthogonal to the range of A first.
Suppose we have the trivial problem

A =

[
1
0

]
, b =

[
ε
1

]
.

The solution to this problem is x = ε; but the solution for

A =

[
1
0

]
, b̂ =

[
−ε
1

]
.

is x̂ = −ε. Note that ‖b̂− b‖/‖b‖ ≈ 2ε is small, but |x̂− x|/|x| = 2 is huge.
That is because the projection of b onto the span of A (i.e. the first component
of b) is much smaller than b itself; so an error in b that is small relative to
the overall size may not be small relative to the size of the projection onto
the columns of A.

Of course, the case when b is nearly orthogonal to A often corresponds to
a rather silly regressions, like trying to fit a straight line to data distributed
uniformly around a circle, or trying to find a meaningful signal when the
signal to noise ratio is tiny. This is something to be aware of and to watch
out for, but it isn’t exactly subtle: if ‖r‖/‖b‖ is near one, we have a numerical
problem, but we also probably don’t have a very good model. A more subtle
problem occurs when some columns of A are nearly linearly dependent (i.e. A
is ill-conditioned).

The condition number of A for least squares is

κ(A) = ‖A‖‖A†‖ = σ1/σn.

If κ(A) is large, that means:
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1. Small relative changes to A can cause large changes to the span of A
(i.e. there are some vectors in the span of Â that form a large angle
with all the vectors in the span of A).

2. The linear system to find x in terms of the projection onto A will be
ill-conditioned.

If θ is the angle between b and the range of A, then the sensitivity to per-
turbations in b is

‖δx‖
‖x‖

≤ κ(A)

cos(θ)
‖δb‖‖b‖

while the sensitivity to perturbations in A is

‖δx‖
‖x‖

≤
(
κ(A)2 tan(θ) + κ(A)

) ‖δA‖
‖A‖

Even if the residual is moderate, the sensitivity of the least squares problem
to perturbations in A (either due to roundoff or due to measurement error)
can quickly be dominated by κ(A)2 tan(θ) if κ(A) is at all large.

In regression problems, the columns of A correspond to explanatory fac-
tors. For example, we might try to use height, weight, and age to explain the
probability of some disease. In this setting, ill-conditioning happens when
the explanatory factors are correlated — for example, perhaps weight might
be well predicted by height and age in our sample population. This happens
reasonably often. When there is a lot of correlation, we have an ill-posed
problem; we will talk about this case in a couple lectures.
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