
Bindel, Spring 2023 Numerical Analysis

2023-02-15

1 Perturbation theory
Previously, we described a general error analysis strategy: derive forward
error bounds by combining a sensitivity estimate (in terms of a condition
number) with a backward error analysis that explains the computed result as
the exact answer to a slightly erroneous problem. To follow that strategy
here, we need the sensitivity analysis of solving linear systems.

Suppose that Ax = b and that Âx̂ = b̂, where Â = A + δA, b̂ = b + δb,
and x̂ = x+ δx. Then

δAx+ Aδx+ δA δx = δb.

Assuming the delta terms are small, we have the linear approximation

δAx+ Aδx ≈ δb.

We can use this to get δx alone:

δx ≈ A−1(δb− δAx);

and taking norms gives us

‖δx‖ . ‖A−1‖(‖δb‖+ ‖δA‖‖x‖).

Now, divide through by ‖x‖ to get the relative error in x:

‖δx‖
‖x‖

. ‖A‖‖A−1‖
(
‖δA‖
‖A‖

+
‖δb‖

‖A‖‖x‖

)
.

Recall that ‖b‖ ≤ ‖A‖‖x‖ to arrive at

‖δx‖
‖x‖

. κ(A)

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
,

where κ(A) = ‖A‖‖A−1‖. That is, the relative error in x is (to first order)
bounded by the condition number times the relative errors in A and b. We
can go beyond first order using Neumann series bounds – but perhaps not
today.

Bindel, Spring 2023 Numerical Analysis

2 Backward error in Gaussian elimination
Solving Ax = b in finite precision using Gaussian elimination followed by
forward and backward substitution yields a computed solution x̂ exactly sat-
isfies

(1) (A+ δA)x̂ = b,

where |δA| . 3nεmach|L̂||Û |, assuming L̂ and Û are the computed L and U
factors.

I will now briefly sketch a part of the error analysis following Demmel’s
treatment (§2.4.2, Applied Numerical Linear Algebra). Here is the idea. Sup-
pose L̂ and Û are the computed L and U factors. We obtain ûjk by repeatedly
subtracting ljiuik from the original ajk, i.e.

ûjk = fl

(
ajk −

j−1∑
i=1

l̂jiûik

)
.

Regardless of the order of the sum, we get an error that looks like

ûjk = ajk(1 + δ0)−
j−1∑
i=1

l̂jiûik(1 + δi) +O(ε2mach)

where |δi| ≤ (j − 1)εmach. Turning this around gives

ajk =
1

1 + δ0

(
l̂jjûjk +

j−1∑
i=1

l̂jiûik(1 + δi)

)
+O(ε2mach)

= l̂jjûjk(1− δ0) +

j−1∑
i=1

l̂jiûik(1 + δi − δ0) +O(ε2mach)

=
(
L̂Û
)
jk
+ Ejk,

where

Ejk = −l̂jjûjkδ0 +

j−1∑
i=1

l̂jiûik(δi − δ0) +O(ε2mach)

Bindel, Spring 2023 Numerical Analysis

is bounded in magnitude by (j − 1)εmach(|L||U |)jk + O(ε2mach)
1. A similar

argument for the components of L̂ yields

A = L̂Û + E, where |E| ≤ nεmach|L̂||Û |+O(ε2mach).

In addition to the backward error due to the computation of the LU
factors, there is also backward error in the forward and backward substitution
phases, which gives the overall bound (1).

3 Pivoting
The backward error analysis in the previous section is not completely satis-
factory, since |L||U | may be much larger than |A|, yielding a large backward
error overall. For example, consider the matrix

A =

[
δ 1
1 1

]
=

[
1 0
δ−1 1

] [
δ 1
0 1− δ−1

]
.

If 0 < δ � 1 then ‖L‖∞‖U‖∞ ≈ δ−2, even though ‖A‖∞ ≈ 2. The problem
is that we ended up subtracting a huge multiple of the first row from the
second row because δ is close to zero — that is, the leading principle minor
is nearly singular. If δ were exactly zero, then the factorization would fall
apart even in exact arithmetic. The solution to the woes of singular and near
singular minors is pivoting; instead of solving a system with A, we re-order
the equations to get

Â =

[
1 1
δ 1

]
=

[
1 0
δ 1

] [
1 1
0 1− δ

]
.

Now the triangular factors for the re-ordered system matrix Â have very
modest norms, and so we are happy. If we think of the re-ordering as the
effect of a permutation matrix P , we can write

A =

[
δ 1
1 1

]
=

[
0 1
1 0

] [
1 0
δ 1

] [
1 1
0 1− δ

]
= P TLU.

1It’s obvious that Ejk is bounded in magnitude by 2(j − 1)εmach(|L||U |)jk +O(ε2mach).
We cut a factor of two if we go down to the level of looking at the individual rounding
errors during the dot product, because some of those errors cancel.

Bindel, Spring 2023 Numerical Analysis

Note that this is equivalent to writing PA = LU where P is another permu-
tation (which undoes the action of P T).

If we wish to control the multipliers, it’s natural to choose the permuta-
tion P so that each of the multipliers is at most one. This standard choice
leads to the following algorithm:

1 # Return L, U, p s.t. A[p,:] = L*U and the largest entry of L has magnitude 1
2 function my_pivoted_lu(A)
3

4 n = size(A)[1]
5 A = copy(A) # Make a local copy to overwrite
6 piv = zeros(Int, n) # Space for the pivot vector
7 piv[1:n] = 1:n
8

9 for j = 1:n-1
10

11 # Find ipiv >= j to maximize |A(i,j)|
12 ipiv = (j-1)+findmax(abs.(A[j:n,j]))[2]
13

14 # Swap row ipiv and row j and record the pivot row
15 A[ipiv,:], A[j,:] = A[j,:], A[ipiv,:]
16 piv[ipiv], piv[j] = piv[j], piv[ipiv]
17

18 # Compute multipliers and update trailing submatrix
19 A[j+1:n,j] /= A[j,j]
20 A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'
21

22 end
23

24 UnitLowerTriangular(A), UpperTriangular(A), piv
25 end

By design, this algorithm produces an L factor in which all the elements
are bounded by one. But what about the U factor? There exist pathological
matrices for which the elements of U grow exponentially with n. But these
examples are extremely uncommon in practice, and so, in general, Gaussian
elimination with partial pivoting does indeed have a small backward error.
Of course, the pivot growth is something that we can monitor, so in the
unlikely event that it does look like things are blowing up, we can tell there
is a problem and try something different.

When problems do occur, it is more frequently the result of ill-conditioning
in the problem than of pivot growth during the factorization.

	Perturbation theory
	Backward error in Gaussian elimination
	Pivoting

