
Bindel, Spring 2023 Numerical Analysis

2023-02-13

1 Cholesky
So far, we have focused on the LU factorization for general nonsymmetric ma-
trices. There is an alternate factorization for the case where A is symmetric
positive definite (SPD), i.e.

• A = AT ,

• xTAx > 0 for any x 6= 0.

For such a matrix, the Cholesky factorization is

A = LLT or A = RTR

where L is a lower triangular matrix with positive diagonal and R is an
upper triangular matrix with positive diagonal (R = LT ). The Cholesky
factor exists iff A is positive definite; in fact, the usual way to test numeri-
cally for positive definiteness is to attempt a Cholesky factorization and see
whether the algorithm succeeds or fails. And, unlike the LU factorization,
the Cholesky factorization is simply backward stable — no appeal to pivot
growth factors is required.

The Cholesky algorithm looks like Gaussian elimination. As with Gaus-
sian elimination, we figure out what goes on by block 2-by-2 factorization:[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
LT
11 LT

21

0 LT
22

]
=

[
L11L

T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22

]
Working block-by-block, we have

L11L
T
11 = A11

L21 = A21L
−T
11

L22L
T
22 = A22 − L21L

T
21

That is, we factor the leading block, do a solve to get the off-diagonal part,
and then form and factor a Schur complement system.

Note that the Schur complement

A22 − L21L
T
21 = A22 − A21A

−1
11 A12



Bindel, Spring 2023 Numerical Analysis

is the same Schur complement that we see in Gaussian elimination with par-
tial pivoting; and, as in Gaussian elimination, we can interpret the Schur
complement as the inverse of a submatrix of A−1. This is important because
any principal submatrix of an SPD matrix is SPD and inverses of SPD matri-
ces are SPD, so the Schur complements formed during Cholesky factorization
remain SPD.

In terms of basic Julia operations, Cholesky factorization looks like
1 # Overwrite the lower triangular factor of A with L
2 for j = 1:n
3 A[j,j] = sqrt(A[j,j])
4 A[j+1:n,j] /= A[j,j]
5 A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'
6 end

This is very similar to the standard Gaussian elimination loop. The only
place where we might be concerned is that we could get into trouble if we
ever encountered a zero or negative diagonal element; but the fact that the
Schur complements remain SPD, together with the fact that the diagonals of
an SPD matrix are all positive, suffices to guarantee this will never happen.

2 Iterative refinement
If we know A and b, a reasonable way to evaluate an approximate solution x̂
is through the residual r = b− Ax̂. The approximate solution satisfies

Ax̂ = b+ r,

so if we subtract of Ax = b, we have

x̂− x = A−1r.

We can use this to get the error estimate

‖x̂− x‖ = ‖A−1‖‖r‖;

but for a given x̂, we also actually have a prayer of evaluating δx = A−1r with
at least some accuracy. It’s worth pausing to think how novel this situation
is. Generally, we can only bound error terms. If I tell you “my answer is off
by just about 2.5,” you’ll look at me much more sceptically than if I tell you
“my answer is off by no more than 2.5,” and reasonably so. After all, if I



Bindel, Spring 2023 Numerical Analysis

knew that my answer was off by nearly 2.5, why wouldn’t I add 2.5 to my
original answer in order to get something closer to truth? This is exactly the
idea behind iterative refinement:

1. Get an approximate solution Ax̂1 ≈ b.

2. Compute the residual r = b− Ax̂1 (to good accuracy).

3. Approximately solve Aδx1 ≈ r.

4. Get a new approximate solution x̂2 = x̂1 + δx1; repeat as needed.

3 Multiple right hand sides
The simplest case of solving multiple problems is when the matrix is fixed,
but there are several right hand sides. That is, we want to solve

Ax(k) = b(k)

for k = 1, . . . ,m. In the simple case where all the right hand sides are
known in advance, we can still accomplish this by using the magic of Julia’s
backslash:

1 X = A\B;

But in some cases, we might not know the kth right hand side until we have
learned the answer to the k−1th question. For example, suppose we wanted
to run the iterative refinement process

x(k+1) = x(k) + Â−1(b− Ax(k))

that was mentioned previously. In Julia, if we had already computed the
factorization

1 F = lu(A)

we might run the iteration
1 x = F\b
2 for k = 1:niter
3 r = b-A*x
4 x += F\r
5 end



Bindel, Spring 2023 Numerical Analysis

Note that we never form the inverse of A, explicitly or implicitly. Rather,
we apply A−1 to vectors through triangular solves involving the factors com-
puted through Gaussian elimination. Using only triangular solves is good for
performance (we take O(n2) time per solve after the original factorization,
rather than O(n3) time); and it is good for numerical stability.

The admonition against inverses sometimes causes a certain amount of
confusion, and it bears repeating: we want to only do permutations and
triangular solves applied to vectors. Specifically, in Julia, we have

1 # Probably best
2 F = lu(A)
3 x = F\b
4

5 # Also OK
6 L, U, p = lu(A)
7 x = U\(L\b[p])
8

9 # Generally bad
10 x = inv(A)*b; # Code that calls 'inv' deserves skepticism
11 x = U\L\b[p]; # Order of operations means we form U\L!


	Cholesky
	Iterative refinement
	Multiple right hand sides

