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1 Matrices and mappings
A matrix represents a mapping between two vector spaces. That is, if L :
V → W is a linear map, then the associated matrix A with respect to bases
V and W satisfies A = W−1LV . The same linear mapping corresponds
to different matrices depending on the choices of basis. But matrices can
represent several other types of mappings as well. Over the course of this
class, we will see several interpretations of matrices:

• Linear maps. A map L : V → W is linear if L(x+ y) = Lx+Ly and
L(αx) = αLx. The corresponding matrix is A = W−1LV .

• Linear operators. A linear map from a space to itself (L : V → V) is
a linear operator. The corresponding (square) matrix is A = V −1LV .

• Bilinear forms. A map a : V ×W → R (or C for complex spaces) is
bilinear if it is linear in both slots: a(αu + v, w) = αa(u,w) + a(v, w)
and a(v, αu + w) = αa(v, u) + a(v, w). The corresponding matrix has
elements Aij = a(vi, wj); if v = V c and w = Wd then a(v, w) = dTAc.
We call a bilinear form on V × V symmetric if a(v, w) = a(w, v); in
this case, the corresponding matrix A is also symmetric (A = AT ).
A symmetric form and the corresponding matrix are called positive
semi-definite if a(v, v) ≥ 0 for all v. The form and matrix are positive
definite if a(v, v) > 0 for any v 6= 0.
A skew-symmetric matrix (A = −AT ) corresponds to a skew-symmetric
or anti-symmetric bilinear form, i.e. a(v, w) = −a(w, v).

• Sesquilinear forms. A map a : V × W → C (where V and W
are complex vector spaces) is sesquilinear if it is linear in the first
slot and the conjugate is linear in the second slot: a(αu + v, w) =
αa(u,w)+a(v, w) and a(v, αu+w) = ᾱa(v, u)+a(v, w). The matrix has
elements Aij = a(vi, wj); if v = V c and w = Wd then a(v, w) = d∗Ac.
We call a sesquilinear form on V ×V Hermitian if a(v, w) = a(w, v); in
this case, the corresponding matrix A is also Hermitian (A = A∗). A
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Hermitian form and the corresponding matrix are called positive semi-
definite if a(v, v) ≥ 0 for all v. The form and matrix are positive definite
if a(v, v) > 0 for any v 6= 0.
A skew-Hermitian matrix (A = −A∗) corresponds to a skew-Hermitian
or anti-Hermitian bilinear form, i.e. a(v, w) = −a(w, v).

• Quadratic forms. A quadratic form φ : V → R (or C) is a homo-
geneous quadratic function on V , i.e. φ(αv) = |α|2φ(v) for which the
map b(v, w) = φ(v +w)− φ(v)− φ(w) is bilinear. Any quadratic form
on a finite-dimensional space can be represented as c∗Ac where c is the
coefficient vector for some Hermitian matrix A. The formula for the
elements of A given φ is left as an exercise.

We care about linear maps and linear operators almost everywhere, and most
students come out of a first linear algebra class with some notion that these
are important. But apart from very standard examples (inner products and
norms), many students have only a vague notion of what a bilinear form,
sesquilinear form, or quadratic form might be. Bilinear forms and sesquilin-
ear forms show up when we discuss large-scale solvers based on projection
methods. Quadratic forms are important in optimization, physics (where
they often represent energy), and statistics (e.g. for understanding variance
and covariance).

1.1 Matrix norms
The space of matrices forms a vector space; and, as with other vector spaces,
it makes sense to talk about norms. In particular, we frequently want norms
that are consistent with vector norms on the range and domain spaces; that
is, for any w and v, we want

w = Av =⇒ ‖w‖ ≤ ‖A‖‖v‖.

One “obvious” consistent norm is the Frobenius norm,

‖A‖2F =
∑
i,j

a2ij.

Even more useful are induced norms (or operator norms)

‖A‖ = sup
v 6=0

‖Av‖
‖v‖

= sup
‖v‖=1

‖Av‖.
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The induced norms corresponding to the vector 1-norm and ∞-norm are

‖A‖1 = max
j

∑
i

|aij| (max abs column sum)

‖A‖∞ = max
i

∑
j

|aij| (max abs row sum)

The norm induced by the vector Euclidean norm (variously called the matrix
2-norm or the spectral norm) is more complicated.

The Frobenius norm and the matrix 2-norm are both orthogonally invari-
ant (or unitarily invariant in a complex vector space. That is, if Q is a square
matrix with Q∗ = Q−1 (an orthogonal or unitary matrix) of the appropriate
dimensions

‖QA‖F = ‖A‖F , ‖AQ‖F = ‖A‖F ,
‖QA‖2 = ‖A‖2, ‖AQ‖2 = ‖A‖2.

This property will turn out to be frequently useful throughout the course.

1.2 Decompositions and canonical forms
Matrix decompositions (also known as matrix factorizations) are central to
numerical linear algebra. We will get to know six such factorizations well:

• PA = LU (a.k.a. Gaussian elimination). Here L is unit lower triangular
(triangular with 1 along the main diagonal), U is upper triangular, and
P is a permutation matrix.

• A = LL∗ (a.k.a. Cholesky factorization). Here A is Hermitian and
positive definite, and L is a lower triangular matrix.

• A = QR (a.k.a. QR decomposition). Here Q has orthonormal columns
and R is upper triangular. If we think of the columns of A as a basis,
QR decomposition corresponds to the Gram-Schmidt orthogonalization
process you have likely seen in the past (though we rarely compute with
Gram-Schmidt).

• A = UΣV ∗ (a.k.a. the singular value decomposition or SVD). Here U
and V have orthonormal columns and Σ is diagonal with non-negative
entries.
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• A = QΛQ∗ (a.k.a. symmetric eigendecomposition). Here A is Hermi-
tian (symmetric in the real case), Q is orthogonal or unitary, and Λ is
a diagonal matrix with real numbers on the diagonal.

• A = QTQ∗ (a.k.a. Schur form). Here A is a square matrix, Q is
orthogonal or unitary, and T is upper triangular (or nearly so).

The last three of these decompositions correspond to canonical forms for
abstract operators. That is, we can view these decompositions as finding
bases in which the matrix representation of some operator or form is partic-
ularly simple. More particularly:

• SVD: For any linear mapping L : V → W , there are orthonormal bases
for the two spaces such that the corresponding matrix is diagonal

• Symmetric eigendecomposition: For any Hermitian sesquilinear
map on an inner product space, there is an orthonormal basis for the
space such that the matrix representation is diagonal.

• Schur form: For any linear operator L : V → V , there is an orthonor-
mal basis for the space such that the matrix representation is upper
triangular. Equivalently, if {u1, . . . , un} is the basis in question, then
sp({uj}kj=1) is an invariant subspace for each 1 ≤ k ≤ n.

The Schur form turns out to be better for numerical work than the Jordan
canonical form that you should have seen in an earlier class. We will discuss
this in more detail when we discuss eigenvalue problems.

1.3 The SVD and the 2-norm
The singular value decomposition is useful for a variety of reasons; we close
off the lecture by showing one such use.

Suppose A = UΣV ∗ is the singular value decomposition of some matrix.
Using orthogonal invariance (unitary invariance) of the 2-norm, we have

‖A‖2 = ‖U∗AV ‖2 = ‖Σ2‖,

i.e.
‖A‖2 = max

‖v‖2=1

∑
j σj|vj|2∑
|vj|2

.
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That is, the spectral norm is the largest weighted average of the singular
values, which is the same as just the largest singular value.

The small singular values also have a meaning. If A is a square, invertible
matrix then

‖A−1‖2 = ‖V Σ−1U∗‖2 = ‖Σ−1‖2,

i.e. ‖A−1|2 is the inverse of the smallest singular value of A.
The smallest singular value of a nonsingular matrix A can also be inter-

preted as the “distance to singularity”: if σn is the smallest singular value of
A, then there is a matrix E such that ‖E‖2 = σn and A+E is singular; and
there is no such matrix with smaller norm.

These facts about the singular value decomposition are worth ponder-
ing, as they will be particularly useful in the next lecture when we ponder
sensitivity and conditioning.
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