
Bindel, Spring 2023 Numerical Analysis

Final exam

You should be able to solve this exam using only the course notes and
previous assignments, but you are welcome to consult any resource you wish
except for people outside the course staff. Provide attribution (a citation or
link) for any ideas you get. Your final write-up should be your own.

You should do problem 1, and any four out of the remaining five problems.
Please indicate which four of the remaining five problems you want graded
(we will not grade all five and take the best).

1 Snacks
1. (1 pt) Complete the course evaluation, if you have not already done so!
2. (1 pt) Give an example of a continuous function f with a zero in [0, 1]

where bisection starting from the interval [0, 1] will fail. Explain.
3. (1 pt) Give an example 1D optimization problem where Newton itera-

tion converges linearly (not quadratically) to a minimum. Explain.
4. (1 pt) Given F = cholesky(A) for spd A ∈ Rn×n, give a Julia code

fragment to evaluate eTnA
−1en = (A−1)nn in O(1) time.

5. (1 pt) Using Newton iteration, solve the simultaneous equations x2 +
xy2 = 9 and 3x2y−y3 = 4. You may use the initial guess (x, y) = (1, 1).
Report your results to at least ten digits.

Answer

let

A = [11.5 6.0 1.0 6.5 3.0;

6.0 16.5 8.0 4.75 7.5;

1.0 8.0 14.5 7.5 5.5;

6.5 4.75 7.5 18.0 5.25;

3.0 7.5 5.5 5.25 13.0]

F = cholesky(A)

invAnn_ref = inv(A)[end,end]

invAnn_fast = 0.0 # TODO: Replace

abs(invAnn_ref-invAnn_fast)/abs(invAnn_ref)

end
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let

xy = [1.0; 1.0]

# TODO: Fill in Newton iteration for 1.5

xy

end

2 Interesting iterations
Consider the function w(s) defined by the scalar equation

wew = s.

1. (2 point) Argue that the equation has a unique solution for any s > 0.
2. (2 points) By manipulating the equations and some clever uses of

Taylor’s theorem with remainder, we get upper and lower bounds of
log((1 +

√
1 + 4s)/2) ≤ w ≤ log(1 + s). For s � 1, both these expres-

sions have large relative errors. Rewrite each expression accurately
using the log1p, which evaluates log(1 + z) accurately when z � 1.

3. (2 points) Consider the iteration wk+1 = s exp(−wk). Derive an error
iteration and analyze its convergence. For what range of s values does
the iteration converge?

4. (2 points) Consider the fixed point iteration wk+1 = G(wk) where
G(w) = s(1 +w)/(s+ ew). The solution to wew = s is a fixed point of
G (you do not need to show this). Argue that this iteration converges
quadratically from good enough initial guesses. In fact, it converges
for any initial guess in [0,∞); you do not have to prove this.

5. (2 points) Complete the function below to evaluate w(s) and w′(s) for
a given s. Report values of w(1) and w′(1) to at least ten digits.

Answer

function bracket_w(s)

# TODO: Rewrite this to avoid error for small s

log((1+sqrt(1+4*s))/2), log(1+s)

end

function compute_w(s)

l, u = bracket_w(s)
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w = (l+u)/2

for k = 1:10

wprev = w

w = s*(1+w)/(s+exp(w))

if abs(wprev-w) < 1e-12*w

break

end

end

# TODO: Rewrite to also return w'

dw = 0.0

w, dw

end

We provide sanity checks for the bracketing behavior at small s and for
the correctness of the derivative calculation.

3 Quirky quadratics
Consider the almost-quadratic optimization problem of minimizing (or find-
ing a stationary point of)

φ(x) =
1

2
xTHx− xTd+ g(cTx).

Here H ∈ Rn×n, x, c, d ∈ Rn, and g : R → R.

1. (2 points) Write an expression for ∇φ.
2. (2 points) Show that x = H−1(d+ γc) for some γ
3. (2 points) Show γ + g′(α + γβ) = 0 for some α and β.
4. (4 points) Using part 3, complete the Newton solver below to compute

γ and hence to compute a stationary point of φ. For the given test
case, report the computed γ to at least ten digits. For full credit, you
should not factor H more than once, and you should use a minimal
number of linear solves with H.

Answer

function p3newton(γ, H, c, d, dg, Hg;

rtol=1e-12, monitor=(γ, r)->nothing)
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# TODO: Newton to solve for γ to resid < rtol (also form x)

γ, x

end

let

H = [1.5 6.0 1.0 6.5 3.0;

6.0 6.5 8.0 4.75 7.5;

1.0 8.0 4.5 7.5 5.5;

6.5 4.75 7.5 8.0 5.25;

3.0 7.5 5.5 5.25 3.0]

c = [10.0; 1.5; 8.5; 2.5; 8.5]

d = [ 1.5; 8.0; 6.5; 4.0; 1.5]

g(x) = -x^3

dg(x) = -3*x^2

Hg(x) = -6*x

rnorms = []

γ, x = p3newton(0.0, H, c, d, dg, Hg,

monitor=(x,r)->push!(rnorms, abs(r)))

# RECOMMENDED CHECKS: Form the residual + plot quadratic conv

end

4 Block GS
Consider the linear system Lz = h with block structure[

A B
C D

] [
x
y

]
=

[
f
g

]
where A ∈ Rn×n and D ∈ Rm×m are invertible. The block Gauss-Seidel
iteration is

Axk+1 = f −Byk

Dyk+1 = g − Cxk+1.

1. (2 points) Write the splitting L = M−N associated with this iteration.
2. (2 points) Write R = M−1N in terms of the component matrices

A,B,C,D.
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3. (3 points) Argue that ρ(R) = ρ(D−1CA−1B) where ρ denotes the spec-
tral radius. You may use without argument that the eigenvalues of a
block triangular matrix are equal to the eigenvalues of its diagonal
blocks.

4. (3 points) Now consider the nonlinear block Gauss-Seidel iteration
Axk+1 = u(yk) and Dyk+1 = w(xk+1) where u : Rm → Rn and
w : Rn → Rm satisfy ‖u′‖2 ≤ Mu and ‖w′‖2 ≤ Mw everywhere. For
convenience, we can also write yk+1 = D−1w(A−1u(yk)) (we can simi-
larly write an iteration satisfied by the xk+1 and xk alone). Argue that
the yk iteration converges if MuMw < σmin(D)σmin(A).

Answer

5 Lolling linkages
We consider an optimization problem inspired by the equilibrium behavior of
a chain of four unit-length rigid beams connected by pivot joints, where the
position of the end beams is constrained. Leaving aside the physical model,
we have the constrained optimization problem

minimize 3 sin(θ1) + sin(θ2) s.t. cos(θ1) + cos(θ2) = 2− δ.

1. (2 points) Argue from Taylor expansion of cos(θ) =
√

1− sin(θ)2 that
cos(θ) ≈ 1 − 1

2
sin(θ)2. Hence for small δ, the constraint is approxi-

mately sin(θ1)2 + sin(θ2)2 = 2δ. For what values of sin(θ1) and sin(θ2)
satisfying this constraint do we minimize the objective?

2. (4 points) Starting from an initial guess derived from the estimate in
the previous problem, write a Newton iteration to find the optimum
angles. What are the angles for δ = 10−2, δ = 10−1, and δ = 0.25?
Give a semilog convergence plot for the δ = 0.25 case.

3. (4 points) Assuming the above constrained optimization problem is
satisfied, write a Newton solver to find δ given the additional equation
y = sin(θ1) + sin(θ2).

Answer

function linkage_θ(δ; rtol=1e-10, monitor=(θ, μ, rnorm)->nothing)

# TODO: Fill in Newton iteration to compute angles for given δ
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# Return θ vector and a residual norm for the tester

end

function linkage_δ(y; rtol=1e-10, monitor=(θ, μ, δ, rnorm)->nothing)

# TODO: Fill in Newton iteration to compute δ for given y

# Return δ and a residual norm for the tester

end

We provide a consistency check for part 3.

let

δref = 0.01

θ, rnormθ = linkage_θ(δref)

δ, rnormδ = linkage_δ(sin(θ[1]) + sin(θ[2]))

relerr_δ = (δref-δ)/δref

md"""

Relative error in recovering δ: $(relerr_δ)

"""

end

We also provide the code to report the numbers and plots that we want!

let

resids = []

monitor(θ, μ, rnorm) = push!(resids, rnorm)

θ01, rnorm01 = linkage_θ(0.01)

θ10, rnorm10 = linkage_θ(0.10)

θ25, rnorm25 = linkage_θ(0.25, monitor=monitor)

p1 = plot(resids, xlabel="k", ylabel="resid norm", yscale=:log10)

md"""

$p1

Converged angles:

- δ=0.01: $(θ01[1]), $(θ01[2])

- δ=0.10: $(θ10[1]), $(θ10[2])

- δ=0.25: $(θ25[1]), $(θ25[2])

"""

end



Bindel, Spring 2023 Numerical Analysis

6 Double trouble
Consider the matrix-valued function G(s) = A+sB where G : [0, 1] → Rn×n.
We give a specific case below. In our example, as s moves from zero to one,
a pair of real eigenvalues “collide” and become a complex conjugate pair.
We are interested in locating this. Your task is to complete several analysis
codes that can help.

1. (3 points) Write a bisection routine to approximately compute the s
where we go from all real eigenvalues to some complex eigenvalues.
Resolve s to at least three digits (bracketing interval of length 10−3).

2. (3 points) Complete the pseudo-arclength continuation code, trace λ(γ)
vs s(γ) for (v(γ), λ(γ)s(γ)) given by G(s)v = λv and vTv = 1. Plot
the resulting curve. What is the maximum value of s you see?

3. (4 points) Write a Gauss-Newton iteration to solve the nonlinear equa-
tions (G(s) − λI)2V = 0 and V T

0 V = I, which characterize a point
at which we have a double eigenvalue. The unknowns in this prob-
lem are s, λ, and V ∈ Rn×2; note that we have 2n + 4 equations in
2n+2 unknowns. Nevertheless, this overdetermined system is solvable,
and Gauss-Newton should converge to it quadratically. Demonstrate
quadratic convergence with a convergence plot. Use an initial guess of
s = 0.25, λ = 3, and V = V0 computed by the previous equation.

Answer

function p6bisection(G)

g(s) = all(isreal.(eigvals(G(s))))

a, b = 0.0, 1.0

a, b

end

function p6continuation(G, A, B, λ0)

n = size(A)[1]

# Provided code to get starting point

FA = eigen(A)

k = findmin(abs.(FA.values.-λ0))[2]

v0 = FA.vectors[:,k]

λ0 = FA.values[k]
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s0 = 0.0

# Packed starting point and initial reference direction

vλs = [v0; λ0; s0]

tprev = [zeros(n+1); 1.0]

# Function whose zeros are of interest

R(v, λ, s) = [G(s)*v-λ*v; v'*v-1]

R(vλs) = R(vλs[1:n], vλs[n+1], vλs[n+2])

# Set up storage for results

srecord = Vector{Float64}([])

λrecord = Vector{Float64}([])

for k = 0:100

# TODO: Compute unit tangent vector t with dot(t, tprev) > 0

# TODO: Starting from predictor vλs + h*t, correct back to curve

# with three Newton steps (take h = 5e-2)

# Stop if we've doubled back and s is going negative

if vλs[end] < 0

break

end

# Record s and λ

push!(λrecord, vλs[n+1])

push!(srecord, vλs[n+2])

end

srecord, λrecord

end

function p6gnsolver(G, A, B, V0, s0, λ0; rtol=1e-10,

monitor=(V, s, λ, rnorm)->nothing)

n = size(V0)[1]
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V = copy(V0)

s = s0

λ = λ0

# TODO: Run G-N to find the double eigenvalue and an associated

# invariant subspace basis V

V, s, λ

end

function p6subspace(G, s, λ)

F = G(s)-λ*I

V0 = qr(randn(4,2)).Q[:,1:2]

for k = 1:10

V0 = qr(F\V0).Q[:,1:2]

end

V0

end

let

A = [ 3.0 6.0 2.0 1.0;

6.0 3.0 2.5 6.5;

2.0 2.5 8.0 4.0;

1.0 6.5 4.0 4.0]

B = [ 1.5 3.0 1.0 5.0;

5.0 9.0 8.0 8.0;

9.0 9.0 0.5 7.0;

2.0 7.0 9.0 8.0]

G(s) = A+s*B

# Estimate transition point via bisection on g

sa, sb = p6bisection(G)

# Pseudo-arclength continuation

srecord, λrecord = p6continuation(G, A, B, 2.0)

smax = maximum(srecord)

p1 = plot(srecord, λrecord, xlabel="s", ylabel="λ",

title="Results of continuation")
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# Estimate starting point with a shift-invert subspace iteration step

s0 = 0.25

λ0 = 3.0

V0 = p6subspace(G, s0, λ0)

resids = []

Vc, sc, λc = p6gnsolver(G, A, B, V0, s0, λ0,

monitor=(V,s,λ,rnorm)->push!(resids, rnorm))

p2 = plot(resids, yscale=:log10)

md"""

- Bisection final interval: [$sa, $sb]

- Maximum $s$ in continuation: $smax

- Gauss-Newton converged to s = $sc, λ = $λc

$p1

$p2

"""

end
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