2023-03-06

Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric, with eigenvalue decomposition $Q\Lambda Q^T$ where the eigenvalues are sorted in descending order of magnitude and $|\lambda_1| > |\lambda_2|$. If we write the eigenvector basis as $Q = \begin{bmatrix} q_1 & Q_2 \end{bmatrix}$, The cosine and sine of the acute angle between q_1 and a unit vector v are $\cos \angle (q_1, v) = |q_1^T v|$ and $\sin \angle (q_1, v) = \sqrt{1 - |q_1^T v|^2} = ||Q_2^T v||$. Using these definitions, argue that when v_k is the *k*th step of power iteration,

 $\tan \angle (q_1, v_k) \le |\lambda_2 / \lambda_1|^k \tan \angle (q_1, v_0).$