
Bindel, Spring 2022 Numerical Analysis

2022-03-21

1 Overview
After this week (and the associated problems), you should come away with
some understanding of

• Algorithms for equation solving, particularly bisection, Newton, secant,
and fixed point iterations.

• Analysis of error recurrences in order fo find rates of convergence for
algorithms; you should also understand a little about analyzing the
sensitivity of the root-finding problem itself.

• Application of standard root-finding procedures to real problems. This
frequently means some sketches and analysis done in advance in order
to figure out appropriate rescalings and changes of variables, handle
singularities, and find good initial guesses (for Newton) or bracketing
intervals (for bisection).

2 A little long division
Let’s begin with a question: Suppose I have a machine with hardware support
for addition, subtraction, multiplication, and scaling by integer powers of two
(positive or negative). How can I implement reciprocation? That is, if d > 1
is an integer, how can I compute 1/d without using division?

This is a linear problem, but as we will see, it presents many of the same
issues as nonlinear problems.

2.1 Method 1: From long division to bisection
Maybe the most obvious algorithm to compute 1/d is binary long division
(the binary version of the decimal long division that we learned in grade
school). To compute a bit in the kth place after the binary point (corre-
sponding to the value 2−k), we see whether 2−kd is greater than the current
remainder; if it is, then we set the bit to one and update the remainder. This
algorithm is shown in Figure 1.

Bindel, Spring 2022 Numerical Analysis

1 function reciprocal_div(d, n; monitor=(x)->nothing)
2

3 r = 1.0 # Current remainder
4 x = 0.0 # Current reciprocal estimate
5 bit = 0.5 # Value of a bit in the current place
6

7 for k = 1:n
8 if r > d*bit
9 x += bit

10 r -= d*bit
11 end
12 monitor(x)
13 bit /= 2
14 end
15 x
16 end

Figure 1: Approximate 1/d by n steps of binary long division.

1 function reciprocal_bisect(d, n; monitor=(x)->nothing)
2 hi = 1.0 # Upper bound
3 lo = 0.0 # Lower bound
4 for k = 1:n
5 x = (hi+lo)/2
6 monitor(x)
7 fx = d*x-1
8 if fx > 0.0
9 hi = x

10 else
11 lo = x
12 end
13 end
14 (hi+lo)/2
15 end

Figure 2: Approximate 1/d by n steps of bisection.

Bindel, Spring 2022 Numerical Analysis

At step k of long division, we have an approximation x̂, x̂ ≤ 1/d < x̂+2−k,
and a remainder r = 1 − dx̂. Based on the remainder, we either get a
zero bit (and discover x̂ ≤ 1/d < x̂ + 2−(k+1)), or we get a one bit (i.e.
x̂+2−(k+1) ≤ 1/d < x̂+2−k). That is, the long division algorithm is implicitly
computing interals that contain 1/d, and each step cuts the interval size
by a factor of two. This is characteristic of bisection, which finds a zero
of any continuous function f(x) by starting with a bracketing interval and
repeatedly cutting those intervals in half. We show the bisection algorithm
in Figure 2.

Method 2: Almost Newton
You might recall Newton’s method from a calculus class. If we want to es-
timate a zero near xk, we take the first-order Taylor expansion near xk and
set that equal to zero:

f(xk+1) ≈ f(xk) + f ′(xk)(xk+1 − xk) = 0.

With a little algebra, we have

xk+1 = xk − f ′(xk)
−1f(xk).

Note that if x∗ is the actual root we seek, then Taylor’s formula with remain-
der yields

0 = f(x∗) = f(xk) + f ′(xk)(x∗ − xk) +
1

2
f ′′(ξ)(x∗ − xk)

2.

Now subtract the Taylor expansions for f(xk+1) and f(x∗) to get

f ′(xk)(xk+1 − x∗) +
1

2
f ′′(ξ)(xk − x∗)

2 = 0.

This gives us an iteration for the error ek = xk − x∗:

ek+1 = −1

2

f ′′(ξ)

f ′(xk)
e2k.

Assuming that we can bound f ′′(ξ)/f(xk) by some modest constant C, this
implies that a small error at ek leads to a really small error |ek+1| ≤ C|ek|2
at the next step. This behavior, where the error is squared at each step, is
quadratic convergence.

Bindel, Spring 2022 Numerical Analysis

If we apply Newton iteration to f(x) = dx− 1, we get

xk+1 = xk −
dxk − 1

d
=

1

d
.

That is, the iteration converges in one step. But remember that we wanted to
avoid division by d! This is actually not uncommon: often it is inconvenient
to work with f ′(xk), and so we instead cook up some approximation. In this
case, let’s suppose we have some d̂ that is an integer power of two close to d.
Then we can write a modified Newton iteration

xk+1 = xk −
dxk − 1

d̂
=

(
1− d

d̂

)
xk +

1

d̂
.

Note that 1/d is a fixed point of this iteration:

1

d
=

(
1− d

d̂

)
1

d
+

1

d̂
.

If we subtract the fixed point equation from the iteration equation, we have
an iteration for the error ek = xk − 1/d:

ek+1 =

(
1− d

d̂

)
ek.

So if |d− d̂|/|d| < 1, the errors will eventually go to zero. For example, if we
choose d̂ to be the next integer power of two larger than d, then |d− d̂|/|d̂| <
1/2, and we get at least one additional binary digit of accuracy at each step.

When we plot the error in long division, bisection, or our modified Newton
iteration on a semi-logarithmic scale, the decay in the error looks (roughly)
like a straight line. That is, we have linear convergence. But we can do
better!

Method 3: Actually Newton
We may have given up on Newton iteration too easily. In many problems,
there are multiple ways to write the same nonlinear equation. For example,
we can write the reciprocal of d as x such that f(x) = dx− 1 = 0, or we can
write it as x such that g(x) = x−1 − d = 0. If we apply Newton iteration to
g, we have

xk+1 = xk −
g(xk)

g′(xk)
= xk + x2

k(x
−1
k − d) = xk(2− dxk).

Bindel, Spring 2022 Numerical Analysis

As before, note that 1/d is a fixed point of this iteration:

1

d
=

1

d

(
2− d

1

d

)
.

Given that 1/d is a fixed point, we have some hope that this iteration will
converge — but when, and how quickly? To answer these questions, we need
to analyze a recurrence for the error.

We can get a recurrence for error by subtracting the true answer 1/d from
both sides of the iteration equation and doing some algebra:

ek+1 = xk+1 − d−1

= xk(2− dxk)− d−1

= −d(x2
k − 2d−1xk + d−2)

= −d(xk − d−1)2

= −de2k

In terms of the relative error δk = ek/d
−1 = dek, we have

δk+1 = −δ2k.

If |δ0| < 1, then this iteration converges — and once convergence really sets
in, it is ferocious, roughly doubling the number of correct digits at each
step. Of course, if |δ0| > 1, then the iteration diverges with equal ferocity.
Fortunately, we can get a good initial guess in the same way we got a good
guess for the modified Newton iteration: choose the first guess to be a nearby
integer power of two.

On some machines, this sort of Newton iteration (intelligently started) is
actually the preferred method for division.

The big picture
Let’s summarize what we have learned from this example (and generalize
slightly to the case of solving f(x) = 0 for more interesting f):

• Bisection is a general, robust strategy. We just need that f is con-
tinuous, and that there is some interval [a, b] so that f(a) and f(b)
have different signs. On the other hand, it is not always easy to get a

Bindel, Spring 2022 Numerical Analysis

bracketing interval; and once we do, bisection only halves that interval
at each step, so it may take many steps to reach an acceptable answer.
Also, bisection is an intrinsically one-dimensional construction.

• Newton iteration is a standard workhorse based on finding zeros of suc-
cessive linear approximations to f . When it converges, it converges fe-
rociously quickly. But Newton iteration requires that we have a deriva-
tive (which is sometimes inconvient), and we may require a good initial
guess.

• A modified Newton iteration sometimes works well if computing a
derivative is a pain. There are many ways we can modify Newton
method for our convenience; for example, we might choose to approxi-
mate f ′(xk) by some fixed value, or we might use a secant approxima-
tion.

• It is often convenient to work with fixed point iterations of the form

xk+1 = g(xk),

where the number we seek is a fixed point of g (x∗ = g(x∗)). Newton-
like methods are an example of fixed point iteration, but there are
others. Whenever we have a fixed point iteration, we can try to write
an iteration for the error:

ek+1 = xk+1 − x∗ = g(xk)− g(x∗) = g(x∗ + ek)− g(x∗).

How easy it is to analyze this error recurrence depends somewhat on
the properties of g. If g has two derivatives, we can write

ek+1 = g′(x∗)ek +
1

2
g′′(ξk)e

2
k ≈ g′(x∗)ek.

If g′(x∗) = 0, the iteration converges superlinearly. If 0 < |g′(x∗)| < 1,
the iteration converges linearly, and |g′(x∗)| is the rate constant. If
|g′(x∗)| > 1, the iteration diverges.

	Overview
	A little long division
	Method 1: From long division to bisection

