
Bindel, Spring 2022 Numerical Analysis

2022-01-26

1 Matrices
From your linear algebra background, you should know a matrix as a rep-
resentation of a linear map. A matrix can also represent a bilinear function
mapping two vectors into the real numbers (or complex numbers for complex
vector spaces):

(v, w) → w∗Av.

Symmetric matrices also represent quadratic forms mapping vectors to real
numbers

ϕ(v) = v∗Av.

We say a symmetric matrix A is positive definite if the corresponding quadratic
form is positive definite, i.e.

v∗Av ≥ 0 with equality iff v = 0.

We will talk more about matrices as representations of linear maps, bilinear
forms, and quadratic forms in the next lecture.

Many “rookie mistakes” in linear algebra involve forgetting ways in which
matrices differ from scalars:

• Not all matrices are square.

• Not all matrices are invertible (even nonzero matrices can be singular).

• Matrix multiplication is associative, but not commutative.

Don’t forget these facts!
In matrix computations, we deal not only with the linear algebraic per-

spective on a matrix, but also with concrete representations. We usually
represent a dense matrix as an array of numbers that are stored sequentially
in computer memory. But we may use different representations depending on
what we want to do. Often our goal is to evaluate some expression involving
a matrix, such as evaluating a linear map or a quadratic form or solving a
linear system. In these cases, we might prefer other different representations
that take advantage of a particular problem’s structure.

Bindel, Spring 2022 Numerical Analysis

2 Twelve Commandments
When Charlie Van Loan teaches matrix computations, he states “twelve com-
mandments” of matrix manipulations:

1. Matrix × vector = linear combination of matrix columns.

2. Inner product = sum of products of corresponding elements.

3. Order of operations is important to performance.

4. Matrix × diagonal = scaling of the matrix columns.

5. Diagonal × matrix = scaling of the matrix rows.

6. Never form an explicit diagonal matrix.

7. Never form an explicit rank one matrix.

8. Matrix × matrix = collection of matrix-vector products.

9. Matrix × matrix = collection of dot products.

10. Matrix × matrix = sum of rank one matrices.

11. Matrix × matrix =⇒ linearly combine rows from the second matrix.

12. Matrix × matrix =⇒ linearly combine columns from the first matrix.

I might add more, but twelve is a nicer-sounding number than thirteen or
fourteen, and fifteen is clearly too many.

3 Block matrices
We often partition matrices into submatrices of different sizes. For example,
we might writea11 a12 b1

a21 a22 b2
c1 c2 d

 =

[
A b
cT d

]
, where A =

[
a11 a12
a21 a22

]
, b =

[
b1
b2

]
, c =

[
c1
c2

]
.

We can manipulate block matrices in much the same way we manipulate
ordinary matrices; we just need to remember that matrix multiplication does
not commute.

Bindel, Spring 2022 Numerical Analysis

Standard matrices
We will see a handful of standard matrices throughout the course:

• The zero matrix (written 0 – we distinguish from the scalar zero by
context). In Julia: zeros(m,n).

• The identity matrix I. In Julia: I (or Matrix(I, n, n) in the rare
cases you need a concrete materialization).

• Diagonal matrices, usually written D. In Julia: diagm(d) where d is
the vector of diagonal entries.

• Permutation matrices, usually written P or Π (but sometimes written
Q if P is already used). These are square 0-1 matrices with exactly one
1 in each row and column. They look like the identity matrix with the
columns permuted. In Julia, I could write P = Matrix(I,n,n); P =
P[:,idx] where idx is an index vector such that data at index idx(k)
in a vector v gets mapped to index k in Pv.

Though I have given Julia commands to construct these matrices, we usually
would not actually create them explicitly except as a step in creating another
matrix (see Van Loan’s sixth commandment!).

4 Matrix shapes and structures
In linear algebra, we talk about different matrix structures. For example:

• A ∈ Rn×n is nonsingular if the inverse exists; otherwise it is singular.

• Q ∈ Rn×n is orthogonal if QTQ = I.

• A ∈ Rn×n is symmetric if A = AT .

• S ∈ Rn×n is skew-symmetric if S = −ST .

• L ∈ Rn×m is low rank if L = UV T for U ∈ Rn×k and V ∈ Rm×k where
k ≪ min(m,n).

Bindel, Spring 2022 Numerical Analysis

These are properties of an underlying linear map or quadratic form; if we
write a different matrix associated with an (appropriately restricted) change
of basis, it will also have the same properties.

In matrix computations, we also talk about the shape (nonzero structure)
of a matrix. For example:

• D is diagonal if dij = 0 for i ̸= j.

• T is tridiagonal if tij = 0 for i ̸∈ {j − 1, j, j + 1}.

• U is upper triangular if uij = 0 for i > j and strictly upper triangular
if uij = 0 for i ≥ j (lower triangular and strictly lower triangular are
similarly defined).

• H is upper Hessenberg if hij = 0 for i > j + 1.

• B is banded if bij = 0 for |i− j| > β.

• S is sparse if most of the entries are zero. The position of the nonzero
entries in the matrix is called the sparsity structure.

We often represent the shape of a matrix by marking where the nonzero
elements are (usually leaving empty space for the zero elements); for example:

Diagonal

×

×
×

×
×

 Tridiagonal

× ×
× × ×

× × ×
× × ×

× ×

Triangular

× × × × ×

× × × ×
× × ×

× ×
×

 Hessenberg

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

We also sometimes talk about the graph of a (square) matrix A ∈ Rn×n:
if we assign a node to each index {1, . . . , n}, an edge (i, j) in the graph
corresponds to aij ̸= 0. There is a close connection between certain classes
of graph algorithms and algorithms for factoring sparse matrices or working

Bindel, Spring 2022 Numerical Analysis

with different matrix shapes. For example, the matrix A can be permuted so
that PAP T is upper triangular iff the associated directed graph is acyclic.

The shape of a matrix (or graph of a matrix) is not intrinsically associ-
ated with a more abstract linear algebra concept; apart from permutations,
sometimes, almost any change of basis will completely destroy the shape.

5 Data sparsity and fast matrix-vector prod-
ucts

We say a matrix A ∈ Rn×m is data sparse if we can represent it with far fewer
than nm parameters. For example,

• Sparse matrices are data sparse – we only need to explicitly know the
positions and values of the nonzero elements.

• A rank one matrix is data sparse: if we write it as an outer product
A = uvT , we need only n + m parameters (we can actually get away
with only n + m − 1, but usually wouldn’t bother). More generally,
low-rank matrices are data sparse.

• A Toeplitz matrix (constant diagonal entries) is data sparse.

• The upper or lower triangle of a low rank matrix is data sparse.

Sums and products of a few data sparse matrices will remain data sparse.
Data sparsity is useful for several reasons. If we are interested in the

matrix itself, data sparsity lets us save storage. If we are interested in mul-
tiplying by the matrix, or solving linear systems involving the matrix, data
sparsity lets us write fast algorithms. For example,

• We can multiply a sparse matrix A times a vector in O(nnz) time in
general, where nnz is the number of nonzeros in the matrix.

• If A = uvT is rank one, we can compute y = Ax in O(n+m) time by
first computing α = vTx (a dot product, O(m) time), then y = αu (a
scaling of the vector u, O(n) time).

• We can multiply a square Toeplitz matrix by a vector in O(n log n)
time using fast Fourier transforms.

Bindel, Spring 2022 Numerical Analysis

• We can multiply the upper or lower triangle of a square low rank matrix
by a vector in O(n) time with a simple loop (left as an exercise).

In much modern research on numerical linear algebra, sparsity or data spar-
sity is the name of the game. Few large problems are unstructured; and
where there is structure, one can usually play games with data sparsity.

	Matrices
	Twelve Commandments
	Block matrices
	Matrix shapes and structures
	Data sparsity and fast matrix-vector products

