
Bindel, Spring 2020 Numerical Analysis

2020-02-19

Orthogonal transformations and Gram-Schmidt
We saw in the last lecture that a natural decomposition for thinking about
least squares problems is the QR decomposition

A = QR,

where Q is an m×m orthogonal matrix and R is an m× n upper triangular
matrix. Equivalently, we can write the “economy” version of the decompo-
sition, A = QR with an m × n matrix Q and an n × n upper triangular R,
where the columns of Q form an orthonormal basis for the range space of
A. Using this decomposition, we can solve the least squares problem via the
triangular system

Rx = QT b.

The Gram-Schmidt procedure is usually the first method people learn
to convert some existing basis (columns of A) into an orthonormal basis
(columns of Q). For each column of A, the procedure subtracts off any
components in the direction of the previous columns, and then scales the
remainder to be unit length. In Matlab, Gram-Schmidt looks something
like this:

1 function [Q] = orth_cgs(A)
2

3 [m,n] = size(A);
4 Q = zeros(m,n);
5 for j = 1:n
6 v = A(:,j); % Take the jth original basis vector
7 v = v-Q(:,1:j-1)*(Q(:,1:j-1)'*v); % Make it orthogonal to q_i, i = 1:j-1
8 v = v/norm(v); % Normalize what remains
9 Q(:,j) = v; % Append the result to the basis

10 end

Where does R appear in this algorithm? It appears thus:
1 function [Q,R] = orth_cgs(A)
2

3 [m,n] = size(A);
4 Q = zeros(m,n);
5 for j = 1:n
6 v = A(:,j); % Take the jth original basis vector



Bindel, Spring 2020 Numerical Analysis

7 rp = Q(:,1:j-1)'*v; % Project v onto previous basis vectors
8 v = v-Q(:,1:j-1)*rp; % Make it orthogonal to q_i, i = 1:j-1
9 R(1:j-1,j) = rp; % Update R with multipliers

10 R(j,j) = norm(v); % Get the normalizing factor
11 v = v/R(j,j); % Normalize what remains
12 Q(:,j) = v; % Append the result to the basis
13 end

That is, R accumulates the multipliers that we computed from the Gram-
Schmidt procedure. This idea that the multipliers in an algorithm can be
thought of as entries in a matrix should be familiar, since we encountered it
before when we looked at Gaussian elimination.

Householder transformations
The Gram-Schmidt orthogonalization procedure is not generally recommended
for numerical use. Suppose we write A = [a1 . . . am] and Q = [q1 . . . qm]. The
essential problem is that if rjj ≪ ∥aj∥2, then cancellation can destroy the
accuracy of the computed qj; and in particular, the computed qj may not
be particularly orthogonal to the previous qj. Actually, loss of orthogonality
can build up even if the diagonal elements of R are not exceptionally small.
This is Not Good, and while we have some tricks to mitigate the problem,
we need a different approach if we want the problem to go away.

Recall that one way of expressing the Gaussian elimination algorithm is
in terms of Gauss transformations that serve to introduce zeros into the lower
triangle of a matrix. Householder transformations are orthogonal transfor-
mations (reflections) that can be used to similar effect. Reflection across the
plane orthogonal to a unit normal vector v can be expressed in matrix form
as

H = I − 2vvT .

Now suppose we are given a vector x and we want to find a reflection
that transforms x into a direction parallel to some unit vector y. The right
reflection is through a hyperplane that bisects the angle between x and y
(see Figure 1), which we can construct by taking the hyperplane normal to



Bindel, Spring 2020 Numerical Analysis

x

∥x∥y

x− ∥x∥y

Figure 1: Construction of a reflector to transform x into ∥x∥y, ∥y∥ = 1.

x− ∥x∥y. That is, letting u = x− ∥x∥y and v = u/∥u∥, we have

(I − 2vvT )x = x− 2
(x+ ∥x∥y)(xTx+ ∥x∥xTy)

∥x∥2 + 2xTy∥x∥+ ∥x∥2∥y∥2

= x− (x− ∥x∥y)
= ∥x∥y.

If we use y = ±e1, we can get a reflection that zeros out all but the first
element of the vector x. So with appropriate choices of reflections, we can
take a matrix A and zero out all of the subdiagonal elements of the first
column.

Now think about applying a sequence of Householder transformations
to introduce subdiagonal zeros into A, just as we used a sequence of Gauss
transformations to introduce subdiagonal zeros in Gaussian elimination. This
leads us to the following algorithm to compute the QR decomposition:

1 function [Q,R] = hqr1(A)
2 % Compute the QR decomposition of an m-by-n matrix A using
3 % Householder transformations.
4

5 [m,n] = size(A);
6 Q = eye(m); % Orthogonal transform so far
7 R = A; % Transformed matrix so far
8

9 for j = 1:n
10

11 % -- Find H = I-tau*w*w' to put zeros below R(j,j)
12 normx = norm(R(j:end,j));



Bindel, Spring 2020 Numerical Analysis

13 s = -sign(R(j,j));
14 u1 = R(j,j) - s*normx;
15 w = R(j:end,j)/u1;
16 w(1) = 1;
17 tau = -s*u1/normx;
18

19 % -- R := HR, Q := QH
20 R(j:end,:) = R(j:end,:)-(tau*w)*(w'*R(j:end,:));
21 Q(:,j:end) = Q(:,j:end)-(Q(:,j:end)*w)*(tau*w)';
22

23 end

Note that there are two valid choices of u1 at each step; we make the choice
that avoids cancellation in the obvious version of the formula.

As with LU factorization, we can re-use the storage of A by recognizing
that the number of nontrivial parameters in the vector w at each step is the
same as the number of zeros produced by that transformation. This gives us
the following:

1 function [A,tau] = hqr2(A)
2 % Compute the QR decomposition of an m-by-n matrix A using
3 % Householder transformations, re-using the storage of A
4 % for the Q and R factors.
5

6 [m,n] = size(A);
7 tau = zeros(n,1);
8

9 for j = 1:n
10

11 % -- Find H = I-tau*w*w' to put zeros below A(j,j)
12 normx = norm(A(j:end,j));
13 s = -sign(A(j,j));
14 u1 = A(j,j) - s*normx;
15 w = A(j:end,j)/u1;
16 w(1) = 1;
17 A(j+1:end,j) = w(2:end); % Save trailing part of w
18 A(j,j) = s*normx; % Diagonal element of R
19 tau(j) = -s*u1/normx;
20

21 % -- R := HR
22 A(j:end,j+1:end) = A(j:end,j+1:end)-...
23 (tau(j)*w)*(w'*A(j:end,j+1:end));
24

25 end



Bindel, Spring 2020 Numerical Analysis

If we ever need Q or QT explicitly, we can always form it from the com-
pressed representation. We can also multiply by Q and QT implicitly:

1 function QX = applyQ(QR,tau,X)
2

3 [m,n] = size(QR);
4 QX = X;
5 for j = n:-1:1
6 w = [1; QR(j+1:end,j)];
7 QX(j:end,:) = QX(j:end,:)-(tau(j)*w)*(w'*QX(j:end,:));
8 end

1 function QTX = applyQT(QR,tau,X)
2

3 [m,n] = size(QR);
4 QTX = X;
5 for j = 1:n
6 w = [1; QR(j+1:end,j)];
7 QTX(j:end,:) = QTX(j:end,:)-(tau(j)*w)*(w'*QTX(j:end,:));
8 end

Givens rotations
Householder reflections are one of the standard orthogonal transformations
used in numerical linear algebra. The other standard orthogonal transforma-
tion is a Givens rotation:

G =

[
c −s
s c

]
.

where c2 + s2 = 1. Note that

G =

[
c −s
s c

] [
x
y

]
=

[
cx− sy
sx+ cy

]
so if we choose

s =
−y√
x2 + y2

, c =
x√

x2 + y2

then the Givens rotation introduces a zero in the second column. More
generally, we can transform a vector in Rm into a vector parallel to e1 by
a sequence of m − 1 Givens rotations, where the first rotation moves the



Bindel, Spring 2020 Numerical Analysis

last element to zero, the second rotation moves the second-to-last element to
zero, and so forth.

For some applications, introducing zeros one by one is very attractive.
In some places, you may see this phrased as a contrast between algorithms
based on Householder reflections and those based on Givens rotations, but
this is not quite right. Small Householder reflections can be used to introduce
one zero at a time, too. Still, in the general usage, Givens rotations seem to
be the more popular choice for this sort of local introduction of zeros.


