
Bindel, Spring 2020 Numerical Analysis

2020-01-22

1 What are we about?
Welcome to “Numerical Analysis: Linear and Nonlinear Equations” (CS
4220, CS 5223, and Math 4260). This is part of a pair of courses offered
jointly between CS and math that provide an introduction to scientific com-
puting. My own tongue-in-cheek summary of scientific computing is that it
is the art of solving problems of continuous mathematics fast enough and ac-
curately enough. Of course, what constitutes “fast enough” and “accurately
enough” depends on context, and learning to reason about that context is
also part of the class.

Because our survey is partitioned into two semesters, we do not cover all
the standard topics in a single semester. In particular, this class will (mostly)
not cover interpolation and function approximation, numerical differentiation
and quadrature, or the solution of ordinary and partial differential equations.
We will focus instead on numerical linear algebra, nonlinear equation solv-
ing, and optimization. Broadly speaking, we will spend the first half of the
semester on factorization methods for linear algebra problems, and the lat-
ter half on iterative methods for both linear and nonlinear problems. As
currently planned, the schedule also includes time for one special topic week
that I expect will bring together several of the themes from the course.

1.1 Mathematics, Computation, Application
Our focus will be the mathematical and computational structure of numerical
methods. But we use numerical methods to solve problems from applications,
and a scientific computing class with no applications is far less rich and
interesting than it ought to be. So we will, when possible, try to bring in
application examples.

The majority of students in the class come from computer science. We
also have students from a wide variety of other majors. This means that
students come to the class with different levels of background and interest in
a variety of application domains. Because of the nature of the enrollment,
many of my examples will come from areas conventionally associated with
computer science and mathematics, but there will also be the odd example
from physics or engineering. So if we dig into an application problem and



Bindel, Spring 2020 Numerical Analysis

you get lost, don’t worry – I don’t expect you to know this already! Also, ask
questions, as there are bound to be others the class who are equally confused.

1.2 Cross-cutting themes
There are some themes that cut across topics in the syllabus, and I expect we
will touch on these themes frequently through the semester. These include:

• Knowing the answer in advance – It’s dangerous to go into a com-
putation with no idea what to expect. The structure of the problem
and the solution affect how we choose methods and how we evaluate
success. A qualitative analysis or ballpark estimate of solution behavior
is usually the first step to intelligently applying a numerical method.

• Pictures and plots – Careful pictures tell us a lot. Plot an approxi-
mate solution. Are there unexpected oscillations or negative values, or
crazy-looking behaviors near the domain of the soution? Maybe you
should investigate! Similarly, plots of error with respect to a spatial
variable or a step number often provide key insights into whether a
method is working as desired.

• Documentation, testing, and error checking – When we write nu-
merical codes, the implied agreement between the author of the code
and the user of the code is often more subtle than the agreements be-
hind other software interfaces. Call a sort routine, and it will sort your
data in some specified time. Call a linear solver, and it will solve your
problem in an amount of time that depends on the problem structure
and with a level of accuracy that depends on the problem character-
istics. This makes good software hygiene – careful documentation,
testing, error checking, and design for reproducibility – both tricky
and important!

• Modularity and composability – When we compose numerical meth-
ods, we have to worry about error. Even if you expect only to use nu-
merical building blocks (and never build them yourself), it is important
to understand the types of error and performance guarantees one can
make and how they are useful in reasoning about large computational
codes.



Bindel, Spring 2020 Numerical Analysis

• Problem formulation and choice of representation – Often, the
same problem can be posed in many different ways. Some suggest
simple, efficient numerical methods. Others are impossibly hard. The
key difference between the two is often in how we represent the problem
data and the thing we seek.

• Numerical anti-patterns – Some operations, such as computing
explicit inverses and determinants, are perfectly natural in symbolic
mathematics but turn out to be terrible ideas in numerical computa-
tions. We will point these out as we come across them.

• Time and memory scalability – We often want to solve big prob-
lems, and it is important to understand before we start whether we
think we can solve a problem on a laptop in a second or two or if we
really need a month on a supercomputer. This means we would like a
rough estimate – usually posed in terms of order notation – of the time
and memory complexity of different algorithms.

• Blocking and building with high-performance blocks – Building
fast codes is hard. As numerical problem solvers, we would like someone
else to do much of this hard work so that we can focus on other things.
This means we need to understand the common building blocks, and
a little bit about not only their complexity, but also why they are fast
or slow on real machines.

• Performance tradeoffs in iterations – Iterative methods produce
a sequence of approximate solutions that (one hopes) get closer and
closer to the right answer. To choose iterations intelligently, we need
to understand the tradeoffs between the time to compute an iteration,
the progress that one can make, and the overall stability of an iterative
procedure.

• Convergence monitoring and stopping – One of the hardest parts
of designing an iterative method is often deciding when to stop. This
point will recur several times in the second half of the semester.

• Use of approximations and surrogates – Simple surrogate models
are an important part of the design of nonlinear iterations. We will
be particularly interested in local polynomial approximations, but we
may talk about some others as well.



Bindel, Spring 2020 Numerical Analysis

2 Logistics
We will go through the syllabus in detail, but at a high level you should
plan on six homeworks (individual) and three projects (in pairs), a midterm,
and a final. I will also ask you for feedback at the middle and end of the
semester, and this counts for credit. Another 10% of your grade involves
in-class work: plan to bring a sheet of paper to turn in, with each in-class
submission worth a third of a point (there are 42 lectures, so you can miss a
few without penalty).

Homework and projects are due via CMS by midnight on Fridays; we
allow some “slip days” so that you can work on an assignment through the
weekend if needed. We will also drop the lowest of the HW grades, in case
there is a particularly hectic week. Office hours are TBD, but we will an-
nounce them soon. You can also request office hours by appointment.

2.1 Infrastructure
Class notes and assignments, as well as class announcements, will be posted
on the course home page. For submissions, solutions, and grades, we will use
the CS Course Management System (CMS) software. For class discussion,
we will use Piazza. There are links from each of these pages to the others; I
recommend you use the class web page as your starting point.

We will use Julia (or MATLAB) in our notes. You may use either one
for your homework; we will distinguish based on the extension.

The course web page is maintained from a repository on GitHub. I en-
courage you to submit corrections or enhancements by pull request!

2.2 Background
The formal prerequisites for the class are linear algebra at the level of Math
2210 or 2940 or equivalent and a CS 1 course in any language. We also
recommend one additional math course at the 3000 level or above; this is
essentially a proxy for “sufficient mathematical maturity.”

In practice: I will assume you know some multivariable calculus and linear
algebra, and that your CS background includes not only basic programming
but also some associated mathematical concepts (e.g. order notation and a
little graph theory). If you feel your background is weak in these areas, please
talk to us.



Bindel, Spring 2020 Numerical Analysis

Some of you may want to review your linear algebra basics in particular.
At Cornell, our undergraduate linear algebra course uses the text by Lay [2];
the texts by Strang [3, 4] are a nice alternative. Strang’s Introduction to
Linear Algebra [4] is the textbook for the MIT linear algebra course that
is the basis for his enormously popular video lectures, available on MIT’s
OpenCourseWare site; if you prefer lecture to reading, Strang is known as
an excellent lecturer.

3 Basic notational conventions
In this section, we set out some basic notational conventions used in the class.

1. The complex unit is i (not i or j).

2. By default, all spaces in this class are finite dimensional. If there is
only one space and the dimension is not otherwise stated, we use n to
denote the dimension.

3. Concrete real and complex vector spaces are Rn and Cn, respectively.

4. Real and complex matrix spaces are Rm×n and Cm×n.

5. Unless otherwise stated, a concrete vector is a column vector.

6. The vector e is the vector of all ones.

7. The vector ei has all zeros except a one in the ith place.

8. The basis {ei}ni=1 is the standard basis in Rn or Cn.

9. We use calligraphic math caps for abstract space, e.g. U ,V ,W .

10. When we say U is a basis for a space U , we mean U is an isomorphism
U → Rn. By a slight abuse of notation, we say U is a matrix whose
columns are the abstract vectors u1, . . . , un, and we write the linear
combination

∑n
i=1 uici concisely as Uc.

11. Similarly, U−1x represents the linear mapping from the abstract vector
x to a concrete coefficient vector c such that x = Uc.

12. The space of univariate polynomials of degree at most d is Pd.



Bindel, Spring 2020 Numerical Analysis

13. Scalars will typically be lower case Greek, e.g. α, β. In some cases, we
will also use lower case Roman letters, e.g. c, d.

14. Vectors (concrete or abstract) are denoted by lower case Roman, e.g. x, y, z.

15. Matrices and linear maps are both denoted by upper case Roman,
e.g. A,B,C.

16. For A ∈ Rm×n, we denote the entry in row i and column j by aij. We
reserve the notation Aij to refer to a submatrix at block row i and
block column j in a partitioning of A.

17. We use a superscript star to denote dual spaces and dual vectors; that
is, v∗ ∈ V∗ is a dual vector in the space dual to V .

18. In Rn, we use x∗ and xT interchangeably for the transpose.

19. In Cn, we use x∗ and xH interchangeably for the conjugate transpose.

20. Inner products are denoted by angles, e.g. ⟨x, y⟩. To denote an alternate
inner product, we use subscripts, e.g. ⟨x, y⟩M = y∗Mx.

21. The standard inner product in Rn or Cn is also x · y.

22. In abstract vector spaces with a standard inner product, we use v∗ to
denote the dual vector associated with v through the inner product,
i.e. v∗ = (w 7→ ⟨w, v⟩).

23. We use the notation ∥x∥ to denote a norm of the vector x. As with in-
ner products, we use subscripts to distinguish between multiple norms.
When dealing with two generic norms, we will sometimes use the no-
tation |||y||| to distinguish the second norm from the first.

24. We use order notation for both algorithm scaling with parameters go-
ing to infinity (e.g. O(n3) time) and for reasoning about scaling with
parameters going to zero (e.g. O(ϵ2) error). We will rely on context to
distinguish between the two.

25. We use variational notation to denote derivatives of matrix expressions,
e.g. δ(AB) = δAB + AδB where δA and δB represent infinitesimal
changes to the matrices A and B.



Bindel, Spring 2020 Numerical Analysis

26. Symbols typeset in Courier font should be interpreted as Matlab or
Julia code or pseudocode, e.g. y = A*x.

27. The function notation fl(x) refers to taking a real or complex quantity
(scalar or vector) and representing each entry in floating point.

4 Matrix algebra versus linear algebra
We share a philosophy about linear algebra: we think basis-

free, we write basis-free, but when the chips are down we close
the office door and compute with matrices like fury.

— Irving Kaplansky on the late Paul Halmos [1],

Linear algebra is fundamentally about the structure of vector spaces and
linear maps between them. A matrix represents a linear map with respect
to some bases. Properties of the underlying linear map may be more or less
obvious via the matrix representation associated with a particular basis, and
much of matrix computations is about finding the right basis (or bases) to
make the properties of some linear map obvious. We also care about finding
changes of basis that are “nice” for numerical work.

In some cases, we care not only about the linear map a matrix represents,
but about the matrix itself. For example, the graph associated with a matrix
A ∈ Rn×n has vertices {1, . . . , n} and an edge (i, j) if aij ̸= 0. Many of the
matrices we encounter in this class are special because of the structure of
the associated graph, which we usually interpret as the “shape” of a matrix
(diagonal, tridiagonal, upper triangular, etc). This structure is a property of
the matrix, and not the underlying linear transformation; change the bases
in an arbitrary way, and the graph changes completely. But identifying and
using special graph structures or matrix shapes is key to building efficient
numerical methods for all the major problems in numerical linear algebra.

In writing, we represent a matrix concretely as an array of numbers.
Inside the computer, a dense matrix representation is a two-dimensional array
data structure, usually ordered row-by-row or column-by-column in order
to accomodate the one-dimensional structure of computer memory address
spaces. While much of our work in the class will involve dense matrix layouts,
it is important to realize that there are other data structures! The “best”
representation for a matrix depends on the structure of the matrix and on
what we want to do with it. For example, many of the algorithms we will



Bindel, Spring 2020 Numerical Analysis

discuss later in the course only require a black box function to multiply an
(abstract) matrix by a vector.

5 Dense matrix basics
There is one common data structure for dense vectors: we store the vector
as a sequential array of memory cells. In contrast, there are two common
data structures for general dense matrices. In Julia (and MATLAB, NumPy,
Fortran), matrices are stored in column-major form. For example, an array
of the first four positive integers interpreted as a two-by-two column major
matrix represents the matrix [

1 3
2 4

]
.

The same array, when interpreted as a row-major matrix, represents[
1 2
3 4

]
.

Unless otherwise stated, we will assume all dense matrices are represented
in column-major form for this class. As we will see, this has some concrete
effects on the efficiency of different types of algorithms.

5.1 The BLAS
The Basic Linear Algebra Subroutines (BLAS) are a standard library inter-
face for manipulating dense vectors and matrices. There are three levels of
BLAS routines:

• Level 1: These routines act on vectors, and include operations such
scaling and dot products. For vectors of length n, they take O(n1)
time.

• Level 2: These routines act on a matrix and a vector, and include
operations such as matrix-vector multiplication and solution of trian-
gular systems of equations by back-substitution. For n × n matrices
and length n vectors, they take O(n2) time.

• Level 3: These routines act on pairs of matrices, and include opera-
tions such as matrix-matrix multiplication. For n × n matrices, they
take O(n3) time.



Bindel, Spring 2020 Numerical Analysis

All of the BLAS routines are superficially equivalent to algorithms that can
be written with a few lines of code involving one, two, or three nested loops
(depending on the level of the routine). Indeed, except for some refinements
involving error checking and scaling for numerical stability, the reference
BLAS implementations involve nothing more than these basic loop nests.
But this simplicity is deceptive — a surprising amount of work goes into
producing high performance implementations.

5.2 Locality and memory
When we analyze algorithms, we often reason about their complexity ab-
stractly, in terms of the scaling of the number of operations required as
a function of problem size. In numerical algorithms, we typically measure
flops (short for floating point operations). For example, consider the loop to
compute the dot product of two vectors:

1 function mydot(x, y)
2 sum = 0
3 for i = 1:length(x)
4 sum += x[i]*y[i]
5 end
6 return sum
7 end

Because it takes n additions and n multiplications, we say this code takes 2n
flops, or (a little more crudely) O(n) flops.

On modern machines, though, counting flops is at best a crude way to
reason about how run times scale with problem size. This is because in
many computations, the time to do arithmetic is dominated by the time to
fetch the data into the processor! A detailed discussion of modern memory
architectures is beyond the scope of these notes, but there are at least two
basic facts that everyone working with matrix computations should know:

• Memories are optimized for access patterns with spatial locality: it is
faster to access entries of memory that are close to each other (ideally
in sequential order) than to access memory entries that are far apart.
Beyond the memory system, sequential access patterns are good for vec-
torization, i.e. for scheduling work to be done in parallel on the vector
arithmetic units that are present on essentially all modern processors.

• Memories are optimized for access patterns with temporal locality; that



Bindel, Spring 2020 Numerical Analysis

is, it is much faster to access a small amount of data repeatedly than
to access large amounts of data.

The main mechanism for optimizing access patterns with temporal lo-
cality is a system of caches, fast and (relatively) small memories that can
be accessed more quickly (i.e. with lower latency) than the main memory.
To effectively use the cache, it is helpful if the working set (memory that is
repeatedly accessed) is smaller than the cache size. For level 1 and 2 BLAS
routines, the amount of work is proportional to the amount of memory used,
and so it is difficult to take advantage of the cache. On the other hand, level
3 BLAS routines do O(n3) work with O(n2) data, and so it is possible for a
clever level 3 BLAS implementation to effectively use the cache.

5.3 Matrix-vector multiply
Let us start with two simple Julia programs for matrix-vector multiplication.
The first one traverses the matrix A one row at a time:

1 function matvec_row(A, x)
2 m, n = size(A)
3 y = zeros(eltype(x), m)
4 for i = 1:m
5 for j = 1:n
6 y[i] += A[i,j] * x[j]
7 end
8 end
9 return y

10 end

The second code traverses a column at a time:
1 function matvec_col(A, x)
2 m, n = size(A)
3 y = zeros(eltype(x), m)
4 for j = 1:n
5 for i = 1:m
6 y[i] += A[i,j] * x[j]
7 end
8 end
9 return y

10 end

It’s not too surprising that the builtin matrix-vector multiply routine
in Julia runs faster than either of our hand-written variants, but there are



Bindel, Spring 2020 Numerical Analysis

some other surprises lurking. We will try timing each of these matrix-vector
multiply methods for random square matrices of size 4095, 4096, and 4097,
to see what happens. Note that we want to run each code many times so
that we don’t get lots of measurement noise from finite timer granularity; for
example,

1 t1 = @elapsed begin
2 for trial = 1:ntrials
3 y = A*x
4 end
5 end

In Matlab we would do the same thing using tic and toc.
On my laptop (a 2018 13 in MacBook Air Retina), we show the GFlop

rates (billions of flops/second) for the three matrix multiply routines in Fig-
ure 5.3. There are a few things to notice:

• The performance of the built-in multiply far exceeds that of any of the
manual implementations.

• The peak performance occurs for moderate size matrices where the
matrix fits into cache, but there is enough work to hide the Matlab
loop overheads.

• The time required for the built-in routine varies dramatically (due to
so-called conflict misses) when the dimension is a multiple of a large
integer power of two.

• For n = 1024, the column-oriented version (which has good spatial
locality) is 10× faster than the row-oriented code, and 45× faster than
the two nested loop version.

If you are so inclined, consider yourself encouraged to repeat the experiment
using your favorite compiled language to see if any of the general trends
change significantly.

5.4 Matrix-matrix multiply
The classic algorithm to compute C := C + AB involves three nested loops

1 C = zeros(m,n)
2 for i = 1:m
3 for j = 1:n



Bindel, Spring 2020 Numerical Analysis

0 100 200 300 400 500 600 700 800 900 1,000 1,100
0

2

4

6

8

10

12

14

16

n

G
Fl

op
/s

Default
Row-oriented
Col-oriented

Figure 1: Timing of three matrix-vector multiply implementations. In each
case, we report the effective time in GFLop/s. The line labeled “default” is
the built-in Julia matvec.



Bindel, Spring 2020 Numerical Analysis

4 for k = 1:p
5 C[i,j] += A[i,k] * B[k,j]
6 end
7 end
8 end

This is sometimes called an inner product variant of the algorithm, because
the innermost loop is computing a dot product between a row of A and a
column of B. But addition is commutative and associative, so we can sum
the terms in a matrix-matrix product in any order and get the same result.
And we can interpret the orders! A non-exhaustive list is:

• ij(k) or ji(k): Compute entry cij as a product of row i from A and
column j from B (the inner product formulation)

• k(ij): C is a sum of outer products of column k of A and row k of B
for k from 1 to n (the outer product formulation)

• i(jk) or i(kj): Each row of C is a row of A multiplied by B

• j(ij) or j(ki): Each column of C is A multiplied by a column of C

At this point, we could write down all possible loop orderings and run a
timing experiment, similar to what we did with matrix-vector multiplication.
But the truth is that high-performance matrix-matrix multiplication routines
use another access pattern altogether, involving more than three nested loops,
and we will describe this now.

5.5 Blocking and performance
The basic matrix multiply outlined in the previous section will usually be at
least an order of magnitude slower than a well-tuned matrix multiplication
routine. There are several reasons for this lack of performance, but one of
the most important is that the basic algorithm makes poor use of the cache.
Modern chips can perform floating point arithmetic operations much more
quickly than they can fetch data from memory; and the way that the basic
algorithm is organized, we spend most of our time reading from memory
rather than actually doing useful computations. Caches are organized to
take advantage of spatial locality, or use of adjacent memory locations in a
short period of program execution; and temporal locality, or re-use of the
same memory location in a short period of program execution. The basic



Bindel, Spring 2020 Numerical Analysis

matrix multiply organizations don’t do well with either of these. A better
organization would let us move some data into the cache and then do a lot
of arithmetic with that data. The key idea behind this better organization
is blocking.

When we looked at the inner product and outer product organizations
in the previous sections, we really were thinking about partitioning A and
B into rows and columns, respectively. For the inner product algorithm, we
wrote A in terms of rows and B in terms of columns

a1,:
a2,:
...

am,:

 [
b:,1 b:,2 · · · b:,n

]
,

and for the outer product algorithm, we wrote A in terms of colums and B
in terms of rows

[
a:,1 a:,2 · · · a:,p

]

b1,:
b2,:
...
bp,:

 .

More generally, though, we can think of writing A and B as block matrices:

A =


A11 A12 . . . A1,pb

A21 A22 . . . A2,pb... ... ...
Amb,1 Amb,2 . . . Amb,pb



B =


B11 B12 . . . B1,pb

B21 B22 . . . B2,pb... ... ...
Bpb,1 Bpb,2 . . . Bpb,nb


where the matrices Aij and Bjk are compatible for matrix multiplication.
Then we we can write the submatrices of C in terms of the submatrices of A
and B

Cij =
∑
k

AijBjk.



Bindel, Spring 2020 Numerical Analysis

5.6 The lazy man’s approach to performance
An algorithm like matrix multiplication seems simple, but there is a lot
under the hood of a tuned implementation, much of which has to do with the
organization of memory. We often get the best “bang for our buck” by taking
the time to formulate our algorithms in block terms, so that we can spend
most of our computation inside someone else’s well-tuned matrix multiply
routine (or something similar). There are several implementations of the
Basic Linear Algebra Subroutines (BLAS), including some implementations
provided by hardware vendors and some automatically generated by tools
like ATLAS. The best BLAS library varies from platform to platform, but
by using a good BLAS library and writing routines that spend a lot of time
in level 3 BLAS operations (operations that perform O(n3) computation on
O(n2) data and can thus potentially get good cache re-use), we can hope to
build linear algebra codes that get good performance across many platforms.

This is also a good reason to use Julia or Matlab: they use pretty good
BLAS libraries, and so you can often get surprisingly good performance from
it for the types of linear algebraic computations we will pursue.

References
[1] John Ewing and F. W. Gehring, editors. Paul Halmos: Celebrating 50

Years of Mathematics. Springer, 1991.

[2] David Lay, Steven Lay, and Judi McDonald. Linear Algebra and its
Applications. Pearson, fifth edition, 2016.

[3] Gilbert Strang. Linear Algebra and its Applications. Brooks/Cole Pub-
lishing, fourth edition, 2006.

[4] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge
Press, fourth edition, 2009.


	What are we about?
	Mathematics, Computation, Application
	Cross-cutting themes

	Logistics
	Infrastructure
	Background

	Basic notational conventions
	Matrix algebra versus linear algebra
	Dense matrix basics
	The BLAS
	Locality and memory
	Matrix-vector multiply
	Matrix-matrix multiply
	Blocking and performance
	The lazy man's approach to performance


