Midterm

(due: 2020-03-13)
You may (and should) consult any resources you wish except for people (outside the course staff). Provide attribution for any good ideas you might get. Your final write-up should be your own.

True/false For each of the following statements, either give a brief argument that it is true or provide an example to show it is false.

1 pt The eigenvalues of a real symmetric positive definite matrix are all positive.

1 pt Every square nonsingular matrix A can be decomposed as $A=L U$ where L is unit lower triangular and U is upper triangular.

1 pt The eigenvalues of a 2-by-2 matrix are differentiable functions of the matrix entries.

1 pt For every square matrix, power iteration eventually converges to a dominant eigenvector.

1 pt If $A \in \mathbb{R}^{n \times n}$ has condition number $\kappa_{2}(A)=1$, then $A=\alpha Q$ for some real $\alpha \neq 0$ and orthogonal matrix $Q \in \mathbb{R}^{n \times n}$.

1 pt If $A \in \mathbb{R}^{m \times n}$ has full column rank, then $A^{\dagger} A=I$.

Speedy and stable Consider each of the following:
2 pts Rewrite the following code for better speed and numerical stability assuming $P A=L U$ is already computed.

$$
\mathrm{dx}=-\operatorname{inv}(\mathrm{A}) * \mathrm{dA} *_{\operatorname{inv}}(\mathrm{A}) * \mathrm{~b}
$$

2 pts For $x>1$, the equation $x=\cosh (y)$ can be solved as

$$
y=-\ln \left(x-\sqrt{x^{2}-1}\right) .
$$

What happens when $x=10^{8}$? How can we fix it?
2 pts Explain the output of the following code fragment

```
x = 2;
for }\textrm{k}=1:100,\textrm{x}=\operatorname{sqrt(x); end
for }\textrm{k}=1:100,\textrm{x}=\mp@subsup{\textrm{x}}{}{\wedge}2; en
disp(x);
```

Polynomial fitting Consider fitting a polynomial of degree at most d to n data points, i.e.

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(p\left(x_{i}\right)-y_{i}\right)^{2}
$$

2 pts Complete the following code to find $p(x)=\sum_{j=0}^{d} c_{j} x^{j}$ that solves the minimization problem by a standard linear least squares formulation:
function $[\mathrm{c}]=$ poly_least_squares $(\mathrm{x}, \mathrm{y}, \mathrm{d})$
You may write equivalent code in Julia or Python.
2 pts Modify the code to solve the problem

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(p\left(x_{i}\right)-y_{i}\right)^{2}+\mu\|c\|^{2}
$$

In MATLAB, your routine should have the interface
function [c] = poly_least_squares_tik(x, y, d, mu)

You may write equivalent code in Julia or Python.
2 pts Modify the code to solve the problem

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(p\left(x_{i}\right)-y_{i}\right)^{2}+\mu \int_{-1}^{1} p^{\prime}(x)^{2} d x
$$

In MATLAB, your routine should have the interface function [c] = poly_least_squares_smooth($\mathrm{x}, \mathrm{y}, \mathrm{d}, \mathrm{mu}$)

You may write equivalent code in Julia or Python.

Sensitive pseudoinverse Consider the problem

$$
x(s)=(A+s E)^{\dagger} b
$$

where $A \in \mathbb{R}^{m \times n}$ has full column rank. Suppose the economy QR factorization $A=Q R$ is given.

2 pts Compute $x(0)$. Your code should take at most $O(m n)$ time. In MATLAB, this means filling in the second line in this fragment:

$$
\begin{aligned}
& {[\mathrm{Q}, \mathrm{R}]=\mathrm{qr}(\mathrm{~A}, 0) ; \% \text { This is } \mathrm{O}\left(\mathrm{mn}^{\wedge} 2\right)} \\
& \mathrm{x} 0=? ? ? ; \quad \text { \% This should be } \mathrm{O}(\mathrm{mn})
\end{aligned}
$$

4 pts Compute $x^{\prime}(0)$ (worth two points). Your code should take at most $O(m n)$ time (worth two points). You can sanity check your code by a finite difference test:

$$
\begin{aligned}
& \mathrm{h}=1 \mathrm{e}-6 ; \\
& \mathrm{xp}=\left(\mathrm{A}+\mathrm{h}^{*} \mathrm{E}\right) \backslash \mathrm{b} ; \\
& \mathrm{xm}=\left(\mathrm{A}-\mathrm{h}^{*} \mathrm{E}\right) \backslash \mathrm{b} ; \\
& \mathrm{dx} _\mathrm{fd}=(\mathrm{xp}-\mathrm{xm}) / 2 / \mathrm{h} ; \\
& \mathrm{dx}=\% \text { your computation } \\
& \text { relerr }=\text { norm }\left(\mathrm{dx} _\mathrm{fd}-\mathrm{dx}\right) / \operatorname{norm}(\mathrm{dx})
\end{aligned}
$$

Conditioning

2 pts Argue that if $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $A_{11} \in$ $\mathbb{R}^{k \times k}$ is a leading principal submatrix, then $\kappa_{2}\left(A_{11}\right) \leq \kappa(A)$, where κ denotes the usual 2-norm condition number for solving linear systems.

Hint: You may use the interlace theorem, which tells us that if $\mu_{1} \leq$ $\mu_{2} \leq \ldots \leq \mu_{k}$ are the eigenvalues of A_{11} and $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ are the eigenvalues of A, then

$$
\lambda_{j} \leq \mu_{j} \leq \lambda_{n-k+j}
$$

2 pts Show by example that the hypothesis that A is positive definite is necessary in the above statement.

2 pts Show that if $A \in \mathbb{R}^{m \times n}=\left[\begin{array}{ll}A_{1} & A_{2}\end{array}\right]$, then $\kappa\left(A_{1}\right) \leq \kappa(A)$, where κ here denotes the usual condition number for least squares.

