HW for 2020-02-14

(due: 2020-02-21)
You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

1: Describing definiteness Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite. Give brief proofs of each of the following facts

- A is invertible.
- A^{-1} is positive definite.
- Any principal submatrix is positive definite.
- Any Schur complement is positive definite.

2: Beyond Cholesky Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $B \in \mathbb{R}^{n \times k}$ has full column $\operatorname{rank}($ with $k<n$). Argue for the existence of the factorization

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & 0
\end{array}\right]=\left[\begin{array}{cc}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]^{T}
$$

and give a short code (using all the standard built-ins) to compute this factorization in the language of your choice.

3: Recover the map Suppose we are given N pairs $\left(x^{(i)}, y^{(i)}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Write a short code (in any language) to solve

$$
\operatorname{minimize} \sum_{i=1}^{N}\left\|y^{(i)}-A x^{(i)}\right\|^{2} \text { over } A \in \mathbb{R}^{n \times n}
$$

You may use built-in functions for solving least squares. Illustrate your code on a sample set of points.

