HW for 2020-01-24

(due: 2020-01-31)
You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

1: Placing parens Suppose $A, B \in \mathbb{R}^{n \times n}$ are square matrices, $D=$ $\operatorname{diag}(d) \in \mathbb{R}^{n \times n}$ is a diagonal matrix, and $u, v \in \mathbb{R}^{n}$ are vectors. Write short fragments of Julia, MATLAB, or Python to evaluate each of the following expressions in the inidicated complexity

- $\operatorname{tr}(\mathrm{DAD})$ in $O(n)$
- $v^{T}\left(I+u u^{T}\right) v$ in $O(n)$
- $u^{T} A^{2} v$ in $O\left(n^{2}\right)$

2: Making matrices In terms of the power basis, write

- $A \in \mathbb{R}^{5 \times 4}$ corresponding to multiplication of a polynomial of degree at most 3 by x.
- $B \in \mathbb{R}^{5 \times 5}$ corresponding to differentiation of quartics.
- A symmetric $M \in \mathbb{R}^{3 \times 3}$ representing the quadratic form $p(x) \mapsto \int_{0}^{1} p(x)^{2} d x$ for polynomials $p(x)$ of maximum degree 2 ; that is,

$$
\int_{0}^{1} p(x)^{2} d x=c^{T} M c
$$

where $c \in \mathbb{R}^{3}$ is the vector of coefficients for the polynomial.
3: Low rank limbo SSuppose $u, v \in \mathbb{R}^{n}$ and let $L=u v^{*}$. Show that

- $\|L\|_{1}=\|u\|_{1}\|v\|_{\infty}$
- $\|L\|_{\infty}=\|u\|_{\infty}\|v\|_{1}$
- $\|L\|_{F}=\|u\|_{2}\|v\|_{2}$

