
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Proj 3: Evolutionary Dynamics

1 Introduction

Nonlinear dynamics is a fascinating area for both theoretical analysis and
numerics. Almost any corner of science or engineering that considers how
things evolve in time1 features some set of favorite nonlinear model problems
that illustrate interesting qualitative features. In evolutionary game theory,
an area connected to both mathematical biology and economics, there are
a wide variety of such models. These include the replicator equations, the
Lotka-Volterra equations, and many others. In this project, we will consider a
variant of the Lotka-Volterra equations inspired by a recent paper by Toupo,
Strogatz, Cohen, and Rand2. I would be surprised if this model is totally
new, but know of no related work. I would welcome any comments about
related models in the literature that you might come across as you work on
the project.

1.1 Single strategy case

We begin with a case that is simple enough to analyze by hand. As a mo-
tivating story, we consider a population of x foragers searching for food re-
sources. The quantity of food resources r varies depending on the action of
the foragers. We characterize foragers by two closely related rates: a rate
of reproduction α(r) and a rate of consumption β(r). We assume β(r) = 0
for r = 0 and that β is smooth and monotonically increasing; and for this
project, we will use α(r) = β(r) − φ where φ > 0 is some basic level of
resource consumption required for continued comfortable existence; popu-
lations with less than φ resources per individual decline, while populations
with more grow. The coupled dynamics of the resource and the population
are given by

ẋ = α(r)x = (β(r)− φ)x

ṙ = ρ− β(r)x.

1That is, almost any corner of science or engineering.
2“Evolutionary game dynamics of controlled and automatic decision-making.” Chaos,

vol 25.7 (2015), 071320; also available as http://arxiv.org/abs/1507.01561.

http://arxiv.org/abs/1507.01561


Bindel, Spring 2017 Numerical Analysis (CS 4220)

Since we have talked not at all about dynamics in this class, we will
focus on equilibrium solutions where ẋ = 0 and ṙ = 0. These correspond to
solutions to the nonlinear equations

(β(r)− φ)x = 0

ρ− β(r)x = 0.

We assume ρ > 0 and β(r) > 0 for r > 0. Under these assumptions, an
equilibrium (if one exists) must satisfy

x =
ρ

φ
and β(r) = φ.

When an equilibrium exists, we analyze its linear stability by looking at
a Jacobian matrix at the equilibrium:

∂

∂(x, r)

[
ẋ
ṙ

]
=

[
0 β′(r)x

−β(r) −β′(r)x

]
.

Even knowing only that β(r), β′(r), and x are all positive numbers, we can
tell from the structure of this matrix that the eigenvalues have negative real
part. Hence, the equilibrium is linearly stable.

1.2 Competing strategies

Now suppose our foragers follow varying strategies: some may be slower but
more systematic in seeking food, while others are quicker. In addition, we
allow foragers to mutate or randomly change strategies at some rate. The
system of differential equations governing the system is

ẋ = (M + diag(a(r)))x

ṙ = ρ− b(r)Tx

where r(t) ∈ R and ρ are as before and

• r(t) ∈ R is the amount of a shared resource at time t

• x(t) ∈ Rn is the distribution of strategies in the system

• a(r) ∈ Rn is a vector of growth rates for varying strategies



Bindel, Spring 2017 Numerical Analysis (CS 4220)

• b(r) ∈ Rn is a vector of consumption rates for varying strategies

• M is a mutation matrix: mij is a rate at which strategy j mutates to
strategy i. Columns of M must sum to zero.

What happens if there is no mutation? In this case (usually), the only
equilibrium solutions will involve exactly one strategy (i.e. one xj is posi-
tive), and the solution will stable if ak(r) < 0. Hence, absent mutations or
other terms that cause different strategies to interact directly (instead of just
through r), the competing strategy case does not provide any interesting new
equilibrium behaviors beyond those that we see in the single-strategy case.

1.3 Modeling resource acquisition

So far, we have not discussed the specific form of β(r). We will use a model
with one parameter, representing the carefulness of the search. Specifically,
we assume that a search takes some minimal time τ > 0, and a search with
time τ +σ succeeds3 with probability 1−exp(−σr). With repeated searches,
the expected rate of resource acquisition is

β(r;σ) =
1− exp(−σr)

τ + σ
,

This has the desired behavior that β(0) = 0, and for any r

β′(r;σ) =
σ

σ + τ
exp(−σr) > 0.

As the number of resources grows large, we find that β approaches 1/(σ+ τ)
from below. We can also solve β(r) = φ in closed form:

r = − 1

σ
log(1− φ(σ + τ)),

assuming (σ + τ)φ < 1. If (σ + τ)φ � 1, a linearization of the log function
gives the estimate r ≈ φ/(σ + τ). This makes sense physically, since if
(σ+τ)φ > 1 then the maximal rate of resource acquisition possible (1/(σ+τ))
is less than the minimal threshold to maintain the population.

In the competing case, we will fix φ to be a constant for all strategies,
but choose varying search times σj on a strategy-by-strategy basis.

3To motivate this model, suppose we search a fraction σ of the space in time σ. If
there are r uniformly distributed resources, the probability of encountering at least one is
1− (1− σ)r ≈ 1− exp(−σr), where the approximation holds for small σ.



Bindel, Spring 2017 Numerical Analysis (CS 4220)

2 Numerical treatment

We now consider the case with n possible strategies associated with bj(r) =
β(r;σj) and aj(r) = bj(r)− φ where σj = j(φ−1 − τ)/n for j = 0, . . . , n− 1.
We also allow a small uniform mutation

M = −εL, where L = I − 1

n
eeT .

We are interested in the equilibrium solutions, i.e.

(M + diag(a(r)))x = 0

ρ− b(r)Tx = 0

and their stability as a function of the mutation rate ε, the base resource
consumption rate φ, the resource production rate ρ, and the basic search
time τ . Our default values for these parameters will be ρ = 1, φ = 2, and
τ = 0.1; unless otherwise stated, we will default to n = 104.

2.1 No mutations

We begin by considering the case where there is no mutation (ε = 0) and n
tends toward infinity. In this case, we expect one strategy associated with
some specific value σ ∈ R to dominate all others. Hence, we want to find
(as a function of φ, τ , and ρ) values σ∗ and r∗ such that β(r∗;σ∗) = φ and
β(r∗;σ∗) > β(r∗;σ) for any σ 6= σ∗.

Task 1 Write the following code to solve this problem numerically, using
any method you like:

1 function [r, sigma] = opt_growth(phi, tau)

Check to see whether your solution is consistent with the behavior of the
numerical problem (you will generally only find one stable equilibrium in the
discrete problem). Your solver should be robust over the full range of values
for the parameters; if there is some corner where the problem becomes hard,
you should give a warning.

We can find the corresponding optimal strategy in the case of finite n
by looking at the discrete points σj that are closest to σ∗ I recommend a
function opt_growthn to do this.



Bindel, Spring 2017 Numerical Analysis (CS 4220)

2.2 Small mutations

We expect the solutions to the equilibrium equations to depend continuously
(and usually differentiably) on ε. To understand the behavior near ε = 0, we
assume r = r(ε) and x = x(ε) and differentiate the equation

(−εL+ diag(a(r)))x = 0

with respect to ε.

Task 2 Write a routine to compute the derivative of the stable equilibrium
(x, r) with respect to ε at ε = 0.

1 function [dr, dx] = small_mutation(phi, rho, tau, n)

Your solution algorithm should work even if n is very large — don’t use dense
algorithms!

2.3 Moderate mutations

While the first-order perturbation theory is useful, it may not be adequate
to describe what happens as ε grows. For this, a Newton iteration with
continuation may be useful; however, if you have more clever solver ideas,
you are welcome to use them.

Task 3 Write a routine to continue the stable equilibrium solution from
ε = 0 up to some specified εmax. Your routine should return the values of ε
sampled and the corresponding x and r values.

1 function [epsilons, Xs, rs] = continuer_eps(eps_max, phi, rho, tau, n)

As before, you should not take O(n3) time per iteration! You may use a
trivial predictor, or you may prefer to use an Euler predictor based on a
derivative computation like the one in Task 2.

Task 4 Plot the solutions (both x and r) as a function of ε and comment
on the qualitative behavior. Could you give an intuition that might explain
what happens?



Bindel, Spring 2017 Numerical Analysis (CS 4220)

2.4 Solution sensitivity

Four parameters is too many for a complete exploration, but we certainly
can compute the sensitivities with respect to four parameters at a point.

Task 5 Write a routine that computes not only the solution for a given
set of parameters, but also the derivatives of x and r with respect to the
parameter tuple (ε, φ, ρ, τ). That is, we want an n× 4 matrix of derivatives
of x and a length 4 vector of derivatives of r with respect to the parameters:

1 function [dx,dr] = sensitivity(epsilon, phi, rho, tau, n)

For an illustrative set of parameter values, plot each derivative. Can you give
an intuition for what you see?

3 Going beyond

As is often the case, the model we have described has several (possibly too
many) parameters, and several somewhat ad hoc choices; for example, we
could have used a different form for our β function. The last task is an open-
ended request to go further. Any reasonable effort will be given full credit
(if you are unsure whether your effort is reasonable, ask!).

Task 6 Extend the analysis in this project in some way. Possible examples
could be

• Change the form of β

• Change α (e.g. letting φ vary with σ).

• Analyze different types of mutation matrices.

• Do a parameter study over some interesting parameter region.

• Analyze the stability of the dynamics beyond ε = 0.

• Simulate the ODEs using MATLAB to show the dynamics.

• Do a survey of any related models in the literature.


	Introduction
	Single strategy case
	Competing strategies
	Modeling resource acquisition

	Numerical treatment
	No mutations
	Small mutations
	Moderate mutations
	Solution sensitivity

	Going beyond

