HW 4

1: Crossing cubics A Bezier curve of degree n is the curve traced out by

$$
f(t)=\sum_{i=0}^{n} p_{i} B_{i}^{n}(t), \quad t \in[0,1]
$$

where the points $p_{i} \in \mathbb{R}^{2}$ are control points and the functions $B_{i}^{n}(t)$ are the Bernstein polynomials

$$
B_{i}^{n}(t)=C_{i}^{n}(1-t)^{n-i} t^{i}, \quad C_{i}^{n}=\frac{n!}{i!(n-i)!}
$$

A common type of Bezier curve in computer graphics is the cubic Bezier curve defined by four control points. Complete the following function to compute the intersection of two such curves

```
function [x] = bezier_intersect(pf, pg)
%
% Attempt to compute the intersection of the cubic Bezier curves
% defined by the columns of pf and pg (each of dimension 2-by-4).
% Assume a unique intersection.
```

Illustrate with an example that your solution works correctly.

2: Funky fixed point Argue that the iteration

$$
\begin{aligned}
& 3 x_{k+1}+2 y_{k+1}=\cos \left(x_{k}\right) \\
& 2 x_{k+1}+4 y_{k+1}=\cos \left(y_{k}\right)
\end{aligned}
$$

converges to a unique fixed point $\left(x_{*}, y_{*}\right)$, regardless of the initial point, and that $\left\|e_{k+1}\right\|_{2}<0.7\left\|e_{k}\right\|_{2}$, where $e_{k}=\left(x_{k}-x_{*}, y_{k}-y_{*}\right)$. Starting from the point $(1,1)$, draw a semi-logarithmic plot of the error versus k to illustrate the convergence.

