HW 3

1: Bent lines Suppose we are given noisy data generated from the function

$$
f(x)=\max \left(\alpha_{1} x+\beta_{1}, \alpha_{2} x+\beta_{2}\right)
$$

i.e. we have points $\left\{\left(x_{j}, y_{j}\right)\right\}$ where $y_{j}=f\left(x_{j}\right)+\epsilon_{j}$, with ϵ_{j} a noise variable. Write a routine to find values for $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$ that yield the smallest possible residual in a least squares sense:

```
function [alphas, betas] = hw3_fit_broken(x, y)
```

2: On reflection Write a routine to compute a Householder reflector for polynomials of degree at most d, under the inner product

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Your reflector should map a given polynomial to a positive constant.

```
function [u] = hw3_householder(c)
%
% Given a polynomial p(x) =c(1) + c(2)*x + c(3)*x^2 + ..., find
% a polynomial q(x) = u(1) + u(2)*x + u(3)*x^2 + ... such that
%
% p(x) - 2 q(x) <q(x), p(x)> = constant
```

