HW 2

1: Building blocks Let $d_{1}, d_{2}, u, v \in \mathbb{R}^{n}$ be vectors and define matrices $D_{1}=\operatorname{diag}\left(d_{1}\right), D_{2}=\operatorname{diag}\left(d_{1}\right)$, and $L=u v^{T}$. Write an efficient MATLAB or Julia code ($O(n)$ time) that solves the system

$$
\left[\begin{array}{cc}
D_{1} & L \\
0 & D_{2}
\end{array}\right] x=c
$$

The function signature should look like

```
% MATLAB/Octave version
function x = hw2solve(d1, d2, u, v, c)
% Julia version (returns a vector x)
function hw2solve(d1, d2, u, v, c)
```

2: Pi, see! The following routine estimates π by recursively computing the semiperimeter of a sequence of 2^{k+1}-gons embedded in the unit circle:

```
N = 4;
L(1) = sqrt(2);
s(1) = N*L(1)/2;
for k = 1:30
    N = N*2;
    L(k+1) = sqrt( 2*(1-sqrt(1-L(k)^2/4)) );
    s(k+1) = N*L (k+1)/2;
end
semilogy(1:length(s), abs(s-pi));
ylabel('|s_k-\pi|');
xlabel('k')
```

Plot the absolute error $\left|s_{k}-\pi\right|$ against k on a semilog plot. Explain why the algorithm behaves as it does, and describe a reformulation of the algorithm that does not suffer from this problem.

3: Low rank limbo Suppose $u, v \in \mathbb{R}^{n}$, and let $L=u v^{*}$. Show that

- $\|L\|_{1}=\|u\|_{1}\|v\|_{\infty}$
- $\|L\|_{\infty}=\|u\|_{\infty}\|v\|_{1}$
- $\|L\|_{F}=\|u\|_{2}\|v\|_{2}$

