HW 2

1: Building blocks Let $d_1, d_2, u, v \in \mathbb{R}^n$ be vectors and define matrices $D_1 = \text{diag}(d_1), D_2 = \text{diag}(d_1)$, and $L = uv^T$. Write an efficient MATLAB or Julia code (O(n) time) that solves the system

$$\begin{bmatrix} D_1 & L\\ 0 & D_2 \end{bmatrix} x = c$$

The function signature should look like

```
1 % MATLAB/Octave version
2 function x = hw2solve(d1, d2, u, v, c)
3
4 % Julia version (returns a vector x)
5 function hw2solve(d1, d2, u, v, c)
```

2: Pi, see! The following routine estimates π by recursively computing the semiperimeter of a sequence of 2^{k+1} -gons embedded in the unit circle:

```
1 N = 4;
  L(1) = sqrt(2);
2
   s(1) = N \star L(1) / 2;
   for k = 1:30
4
    N = N \star 2;
5
    L(k+1) = sqrt(2*(1-sqrt(1-L(k)^{2}/4)));
6
     s(k+1) = N \star L(k+1)/2;
7
   end
8
9
semilogy(1:length(s), abs(s-pi));
11 ylabel('|s_k-\pi|');
12 xlabel('k')
```

Plot the absolute error $|s_k - \pi|$ against k on a semilog plot. Explain why the algorithm behaves as it does, and describe a reformulation of the algorithm that does not suffer from this problem.

3: Low rank limbo Suppose $u, v \in \mathbb{R}^n$, and let $L = uv^*$. Show that

- $||L||_1 = ||u||_1 ||v||_{\infty}$
- $||L||_{\infty} = ||u||_{\infty} ||v||_{1}$
- $||L||_F = ||u||_2 ||v||_2$