CS4110

Programming Languages & Logics

Lecture 37
Typed Assembly Language

28 November 2012

Schedule

Monday
 Typed Assembly Language

Today
e Polymorphism
e Stack Types

Friday
e Compilation
e Course Review

TAL-0 Review

e Syntax

e Semantics

e Type System
» U T EveT
» Ui =T/
<7

» FH: W
» FR:T
» + (H,R,B)

w

TAL-0 Review

e Syntax

e Semantics

e Type System
» VT v T » FH: WV
» Wi T =T’ » FR:T
>7'§7'/ > I_(H,R,B)

Theorem (Type Safety)
If =X and X —* Y, then ¥’ isnot stuck.

Lemma (Progress and Preservation)

e |f =X, thenthereexistsa ¥, suchthat X, — X,
e f EX,and X1 — ¥, then F %,

TAL-1: Polymorphism

Syntax

Add type variables o and universal types Va.7

Allow code label types to be polymorphic
Va,B.{n:a,n: B, :{n:B,n:a}—={}} = {}
Add type application v [1]

Write v [y, ..., 7] forv[n] - [n]

Polymorphism Example

swap: Yo, 8. {n ra,rn: Byrs i An s By ial — {}} = {}
MOV I3,
mov i,
MoV 1,3

jmp 13
swap_ints: {r :int,r; rint,r3; : {n sint,r cint} = {}} = {}
jmp swap [int, int]
swap_int_and_label : {r, - int,r; : {r, : int = {}}
mov rsy,L
jmp swap [int, {ryiint} —={}]
L:Ar A int} = {},n:int} = {}

jmp ry

Callee-Saves Reqisters

Common Strategy

When calling a function...

Save the contents of some registers on the stack...
Allow the callee to save (and restore) other designated registers...

If the callee does not use all registers, the cost of saving and
restoring is not incurred...

Correctness Critereon

Callee must return the callee-saves registers to the caller with
the same values as when the function was invoked.

Callee-Saves Example

callee: Yo {r :int,rs s a,r3y = {ry cint,rs : o} — {}} — {}
MOV I4,ls % Save rs
mowv rs,7 % Use rs for other work

add ry,n.rs
MOV Is,/4 % Restore rs
jmp 13
caller: {} — {}
mov rs,255
mov rq,5
mov r3,L
jmp calleelint]
L:{r :int,rs :int} — {}
mul 3,1,/

Callee-Saves Bug

callee: Y. {ry : int, rs
MOV 4,5
MoV rs,/
add ry,n.rs
MOV [5,/4
jmp 13

caller: {} — {}
mov rs,255
mov 1,5
mov r3,L
jmp callee[int]

mul r3,r1,rs

% Save rs
% Use rs for other work

% Restore rs
% Error! rs:int

L:An cint,rs s int} — {}

QI3 {/'1 . int,rS . Oé} — {}} = {}

Parametricity

e (Can prove that the correct version
preserves callee-saves registers

Parametricity

e (Can prove that the correct version
preserves callee-saves registers

e This follows directly from callee’s
polymorphic typel!
ry:int,
Vo] Is:a, —{}
31 :{ﬁ :int,r5 Oé}—){}

Parametricity

e (Can prove that the correct version
preserves callee-saves registers

e This follows directly from callee’s

polymorphic typel!
ry:int,
Va. § rs:a, —{}

31 :{ﬁ :int,r5:a}—>{}

e Moral: polymorphism is useful for
more than just code reuse

Parametricity

e (Can prove that the correct version
preserves callee-saves registers

e This follows directly from callee’s

polymorphic typel!
ry:int,
Va. § rs:a, —{}

31 :{ﬁ :int,r5:a}—>{}

e Moral: polymorphism is useful for
more than just code reuse

e Types can also be used to constrain
the behavior of functions

Parametricity

e (Can prove that the correct version
preserves callee-saves registers

e This follows directly from callee’s

polymorphic typel!
ry:int,
Va. § rs:a, —{}

31 :{ﬁ :int,r5:a}—>{}

e Moral: polymorphism is useful for
more than just code reuse

Paper: P. Wadler. “Theo-
rems for Free!” In FPCA, pp.
347-359. September 1989.

e Types can also be used to constrain
the behavior of functions

Operational Semantics

We need to make a few small changes to the operational semantics

Operational Semantics

We need to make a few small changes to the operational semantics
e Heaps H now map labels to type-labeled blocks:
H(L) =Vaq,...,o. T = {}.B

Operational Semantics

We need to make a few small changes to the operational semantics
e Heaps H now map labels to type-labeled blocks:
H(L) =Vaq,...,o. T = {}.B

e Type variables may appear free in both " and B

Operational Semantics

We need to make a few small changes to the operational semantics
e Heaps H now map labels to type-labeled blocks:
H(L) =Vaq,...,o. T = {}.B

e Type variables may appear free in both " and B

e Control-flow operations substitute types

Operational Semantics

We need to make a few small changes to the operational semantics
e Heaps H now map labels to type-labeled blocks:
H(L) =Vaq,...,o. T = {}.B

e Type variables may appear free in both " and B

e Control-flow operations substitute types

(H,R,jmp v[r1,...,7]) — (H,R, Blri /o, ..., 7/ cu])
where R(v) = Land H(L) = Yoy, ..., . T — {}. B

Operational Semantics

We need to make a few small changes to the operational semantics
e Heaps H now map labels to type-labeled blocks:
H(L) =Vaq,...,o. T = {}.B

e Type variables may appear free in both " and B

e Control-flow operations substitute types
(H7 R7Jmp V[T17 R 77—/(]) = (H7 R7 8[7_1/0”7 s aTk/ak])
where R(v) = Land H(L) = Yoy, ..., . T — {}. B

(H7R7 beq r V[Th"‘aTk];B) = (H,R,BI[T]/Oé1,...,Tk/Oék])
where R(r) = 0,R(v) = L,and H(L) = Vau, ..., . T — {}. B

Typing Polymormphism

‘\U;A;FI_VZT‘

Typing Polymormphism

‘\U;A;FI_VZT‘

Type application

VAT EY: Yoy, .o, TN = {} AT
VAT EV[T]: Vag, ..., " = {})[r/q]

TAL-2: Stack Types

Run-Time Stack

Almost every compiler uses a run-time stack
e Whatis a stack?

e A consecutive sequence of memory addresses with one end
designated as the top of the stack

e Values are stored on the top of the stack and retrieved later

e The compiler may grow or shrink the stack as needed

Stack uses
e | ocal variables

e Spilled registers

e Return addresses

Stack Syntax

e Machine states:

M= (H,R,S,B)
e Stacks:

Su=][]|v:S
e |nstructions:

j=---|sallocn |sfreen|sldry,n|sstv,n
e Errors:

» Free too many values
» Read too deep in the stack
» Write too deep in the stack

Stack Instructions

The new stack instructions can be easily encoded:

e Adesignated register sp points to the top of the stack

e salloc n subtracts n from sp (i.e., sub sp, sp, n)

e sfree nadds nto sp (i.e, add sp, sp, n)

* sldry, nreads a value at offset n relative to sp (i.e, Id rg, sp(n))

* sstv,n writes a value at offset n relative to sp (i.e., st sp(n), v)

CISC-like stack instructions can also be encoded:

e pushvissalloc 1;sstv, 1

e popryissldry, 1; sfree 1

Example: Factorial

fact(n) =
ifn < O0then 1
else n x fact(n — 1)

Example: Factorial

fact. bgtr,L1
mov 1,1
jmp 13

L1: salloc2
sst 13,1
sst rq,2
sub ry,n,1
mov r3,L
jmp fact

L: sldr,,2
sld 31,1
sfree 2
mul ry,n.n
jmp 13

% ifn > 0,goto L1

% ifn <0, return

% allocate space for frame
% save return address

% save n

%n.=n-—1

% set return address

% recursive call

% restore n

% restore return address
% free space for frame

% result := n x fact(n — 1)
% return

~

Operational Semantics

(H,R, S, sallocn; B) — (H,R, 7 - -+

2 7::5,B)

Operational Semantics

(H,R, S, sallocn; B) +— (H,R,?:: -+ ::7::S5 B)

(H,R,vy = -+ 1v, 2 S, sfree n; B) — (H, R, S, B)

Operational Semantics

(H,R, S, sallocn; B) +— (H,R,?:: -+ ::7::S5 B)
(H,R,vy = -+ 1v, 2 S, sfree n; B) — (H, R, S, B)
S=vii v, S

(H,R,S,sld rg,n; B) = (H,R[rs:= vy, S, B)

Operational Semantics

(H,R, S, sallocn; B) +— (H,R,?:: -+ ::7::S5 B)

(H,R,vy = -+ 1v, 2 S, sfree n; B) — (H, R, S, B)

S=vii v, S

(H,R,S,sld rg,n; B) = (H,R[rs:= vy, S, B)

S=viu v, S
(H,R,S,sstv,n; B) — (H,R,vy = -+ 2R(r;) 2 S, B)

Type System

Syntax

ou=|[l|7u0|p

Type System

Syntax
ox=[]|T:0]|p

e [] represents empty stacks

19

Type System

Syntax
ox=[]|T:0]|p
e [] represents empty stacks

e 70 represents stacks with top of type 7 and rest of type o

19

Type System

Syntax
ox=[]|T:0]|p
e [] represents empty stacks

e 70 represents stacks with top of type 7 and rest of type o

® pisa stack type variable

19

Type System

Syntax
ou=|[l|7u0|p
e [] represents empty stacks
e 70 represents stacks with top of type 7 and rest of type o
® pisa stack type variable
* Register file types contain a special variable sp

{sp:intint:{],r cint,... }

Type System

Syntax

ou=|[l|7u0|p

[] represents empty stacks

e 70 represents stacks with top of type 7 and rest of type o

pis a stack type variable

Register file types contain a special variable sp

{sp:intint:{],r cint,... }

Code label types can be polymorphic over stack types

Vp. {sp:int:p,n:int} — {}

Type System

Syntax

ou=|[l|7u0|p

[] represents empty stacks

e 70 represents stacks with top of type 7 and rest of type o

pis a stack type variable

Register file types contain a special variable sp

{sp:intint:{],r cint,... }

Code label types can be polymorphic over stack types
Vp. {sp:int:p,n:int} — {}

Junk values “?" have junk types “?"

Typing Stacks

W AT =T

20

Typing Stacks

W AT =T

Stack allocation

M(sp)=0c
V;Absallocn: T —=T[sp:=2: .- 270

20

Typing Stacks

W AT =T

Stack allocation

M(sp)=0c
V;Absallocn: T —=T[sp:=2: .- 270
Stack free
F(sp)=m: -+ umio

V: Al sfreen: T — Isp:=o]

20

Typing Stacks

W AT =T

Stack load

F(sp)=m - umpuo
V;AEsldrg,n: T —Try:=7,]

21

Typing Stacks

W AT =T

Stack load

F(sp)=m - umpuo
V;AEsldrg,n: T —Try:=7,]

Stack store

V-A:THv:T F(sp)=m - umuo
V:AFsstv,n:T = T[sp=m:u-- u7120]

21

Example: Factorial Bug

fact: Vp. {sp: p,n :int,rsy : {ry 1int,;sp: p} = {}} = {}
bgt ry,L1[p]
mov ry,1
Jjmp r3;
L1:Np. {sp:p,ryrint,rsy : {n tint,sp: p}t — {}} — {}
salloc 2
sstrsq,1
sstr,2
sub rq,r,1
mov r31,L[p]
jmp fact
L:¥p A{sp:{r :intysp:p} = {}intp,n cint} — {}
sldry,2
sld r3q,1
sfree 2
mul r.n,n

jmp 31 % Errorl sp: {ry int,sp: p} — {}zintp

Example: Callee Bug

caller:Np. {sp : Tecode :: p} — {}
salloc 1
mov ry,17
sstr,1
mov r3;,L[p]
jmp callee[Teoge = pl
callee:Np. {sp :int::p,r31 : {sp: p,ry :int} = {}} = {}
sld rq,1
add ry,n,n
sstr,2 % Error!
sfree 1
jmp 13
L:Vp.{sp: Teode i py 11 2Nt — {}

Type Safety

* Type safety ensures we don't .
g et stu Ck Stack-based typed assembly language

e With a few additional features,
can handle exceptions

e Paper: G. Morrisett, K. Crary, N.
Glew, and D. Walker.
“Stack-based Typed Assembly
Language!” In JFP. 12(1):43-88.
January 2002.

24

Discussion

e Note that we didn't bake in a specific calling convention

Discussion

e Note that we didn't bake in a specific calling convention

e Stacks plus jmp were sufficient

Discussion

e Note that we didn't bake in a specific calling convention
e Stacks plus jmp were sufficient

e Easy to handle tail calls

Discussion

Note that we didn't bake in a specific calling convention

Stacks plus jmp were sufficient

Easy to handle tail calls

Polymorphism is critical

Discussion

e Note that we didn't bake in a specific calling convention
e Stacks plus jmp were sufficient

e Easy to handle tail calls

e Polymorphism is critical

e Can encode many calling conventions:
» Arguments on stack or in registers?
» Results on stack or in registers?
» Return address: caller pops? callee pops?
» Registers: caller saves? callee saves?

Discussion

e Note that we didn't bake in a specific calling convention
e Stacks plus jmp were sufficient

e Easy to handle tail calls

e Polymorphism is critical

e Can encode many calling conventions:
Arguments on stack or in registers?
Results on stack or in registers?

Return address: caller pops? callee pops?
Registers: caller saves? callee saves?

v

v

v

v

Moral: orthogonal combination of type system constructs makes it
easy to scale language features

