CS4110

Programming Languages & Logics

Lecture 36
Typed Assembly Language

26 November 2012



Overview

Slogan: “Safety through types”

e An architecture for safe mobile code

» Download annotated binaries from an untrusted code producer
» Verify code using a trusted typechecker
» Link and execute without errors

e Security properties hinge on understanding behavior

» Must reason precisely about programs
» Define "good” and “bad” behaviors
» |dentify and rule out “bad programs”

e Typed Assembly Language (TAL) is a framework that
accomplishes these goals in a setting where the programs in
question are x86 executables



Schedule

Today
e Typed Assembly Language
e Prelim #2 hand back

Wednesday
e Polymorphism
e Stack Types

Friday
e Compilation
e Course Review



Acknowledgments

e These lectures developed by L
David Walker (Princeton) '

Korl Crary Neal Glewr

e They describe Typed
Assembly Language, a project
at Cornell led by Greg
Morrisett about 15 years ago

e Paper: G. Morrisett, D. Walker,
K. Crary, and N. Glew. “From
System F to Typed Assembly
Language!” In ACM TOPLAS.
21(3):527-568. May 1999.




What is TAL?

In Theory

A RISC-like assembly language
A formal operational semantics

A family of type systems that capture key safety properties of
registers, stack, and the heap

Rigorous proofs of soundness which demonstrate that TAL
enforces security guarantees



What is TAL?

In Theory
e ARISC-like assembly language

A formal operational semantics

A family of type systems that capture key safety properties of
registers, stack, and the heap

Rigorous proofs of soundness which demonstrate that TAL
enforces security guarantees

In Practice

A typechecker for almost all of the Intel IA32 architecture
A collection of tools for assembling linking, etc. TAL binaries

A compiler for a safe C-like language called Popcorn



Example

High-level code:

fact (n,a) =
if (n <0)then a
else fact(n-1,a x n)

Assembly code:
% r; holds n, r, holds a, r3; holds return address
fact. blenr 2 %ifn <0gotol2
mul 15,5, %a=axn
sub ry,n,1 %n=n-1
jmp fact % goto fact
L[2: movrn,hn % result:=a
jmp r3; % return




TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,r,r,...}

~



TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,r,r,...}

e |abels: L € [dentifier



TAL Syntax

Models a simple RISC-like assembly language.
e Registers:r € {ry,r,r,...}
e Labels: L € Identifier

e Integers:n € [—2¢71...2571)



TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,r,r,...}

Labels: L € Identifier

Integers: n € [—2"...2¢7T)

Blocks: B::=1i; B | jmpv



TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,r,r,...}

Labels: L € Identifier

Integers: n € [—2"...2¢7T)

Blocks: B::=1i; B | jmpv

Instructions: j ::=aop r4, rs,v | bop r,v | movr,v



TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,r,r,...}

Labels: L € Identifier

Integers: n € [—2"...2¢7T)

Blocks: B::=1i; B | jmpv

Instructions: j ::=aop r4, rs,v | bop r,v | movr,v

Operands:vi=r|L|v



TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,r,r,...}

Labels: L € Identifier

Integers: n € [—2"...2¢7T)

Blocks: B::=1i; B | jmpv

Instructions: j ::=aop r4, rs,v | bop r,v | movr,v

Operands:vi=r|L|v

Arithmetic Operations: aop ::=add | sub | mul | ...



TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,r,r,...}

Labels: L € Identifier

Integers: n € [—2"...2¢7T)

Blocks: B::=1i; B | jmpv

Instructions: j ::=aop r4, rs,v | bop r,v | movr,v

Operands:vi=r|L|v

Arithmetic Operations: aop ::=add | sub | mul | ...

Branch Operations: bop ::=beq | bat | ...



TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states




TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

e Machine states: ¥ = (H, R, B)



TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

e Machine states: ¥ = (H, R, B)
e The heap H is a partial map from labels L to blocks B



TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

* Machine states: ¥ = (H, R, B)
e The heap H is a partial map from labels L to blocks B
e The register file R maps registers to values. Abusing notation

slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
Rir) = v ifR={....;r—=v,...}



TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

e Machine states: ¥ = (H, R, B)
e The heap H is a partial map from labels L to blocks B

e The register file R maps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
Rir) = v ifR={....;r—=v,...}

e The current block B is the block associated to the (implicit)
program counter



TAL Operational Semantics (Selected Rules)

(H, R, mov ry4,v; B) — (H,R[rs:=R(v)],B)




TAL Operational Semantics (Selected Rules)

(H, R, mov ry4,v; B) — (H,R[rs:=R(v)],B)

n = R(v) + R(r)
(H,R,add rg, rs,v; B) = (H,R[rg :=n], B)




TAL Operational Semantics (Selected Rules)

(H, R, mov ry4,v; B) — (H,R[rs:=R(v)],B)

n = R(Y) + A(r)
(H,R,add rg, rs,v; B) = (H,R[rg :=n], B)
(

RV =L  H(L)=
(H,R,jmp Vv) — (H,R,B )




TAL Operational Semantics (Selected Rules)

(H, R, mov ry4,v; B) — (H,R[rs:=R(v)],B)

n = R(v) +R(r)
(H,R,add rg, rs,v; B) = (H,R[rg :=n], B)
(

RV)=L  H(L) =
(H,R.jmpv) — (H.R,B )

R(r) #0
(H,R,beqr,v; B) — (H,R,B)




TAL Operational Semantics (Selected Rules)

(H, R, mov ry4,v; B) — (H,R[rs:=R(v)],B)

n = R(v) +R(r)
(H,R,add rg, rs,v; B) = (H,R[rg :=n], B)
(

RV)=L  H(L) =
(H,R.jmpv) — (H.R,B )

R(r) #0
(H,R,beqr,v; B) — (H,R,B)

R(N=0 R(v)=L HL)=#
(H,R,beqr,v; B) — (H,R,B")




Errors

e The machine is stuck if there does not exist a transition from the
current state to some following state

e We will use stuck states to define the “bad” behaviors that may
occur at run-time

e The type system will guarantee that well-typed machines never
get stuck

e Example stuck states:

» (H,R,add rg,rs,v; B) where r; and v aren't integers
» (H,R,jmp v) where visn't a label
» (H,R,beqr,v)where risn'tan integer or visn't a label

e To distinguish integers and labels we need a type system!



Types

Syntax

e Tu=int| I = {}

e a={n:m,n:n,..

3



Types

Syntax
e Tu=int| I — {}

e Mu={n:m,n:m,...}

Code Types
e Labels are like functions that take a record of arguments

Labels have types of the form {r; : 71, r> : 72, ... } = {}

To jump to code with this type, register r; must contain a value
of type 7y, register r, must contain a value of type 7, and so on

The order that register names appear is irrelevant

Note that functions never return—every block ends with a jmp



Well-Typed Example

fact:

L2:

% ry holds n, r, holds a, r3; holds return address

{n:int,r rintrzy 2 {n s int} = {}} = {}

ble r,L2 % if n < 0goto L2

mul 1y, %a=axn

sub ry,r,1 %n:=n-1

jmp fact % goto fact
{n:int,pint,rsy : {ry int} = {}} = {}
MoV 11,6, % result .= a

jmp r3 % return




ll-Typed Example

fact:

L2:

% ry, holds n, r, holds a, r3; holds return address

{n cint,r3y - {r s int} = {}} — {}

bler,,[2

mul 1y, % Error! r, doesn't have a type
sub ry,n,1

jmp L1 % Error! No such label
{ro:int;rsy : {r :int} = {}} — {}

MoV I3y,

jmp r3; % Error! r3; not a label

13
b



Typechecking Overview

e Intuitively, the type system needs to keep track of:

» The types of the registers at each point in the code
» The types of the labels on the code

e Heap types: W maps labels to code types
e Register types: I maps registers to types

e A family of typing (and subtyping) relations:
V:lkv:r

VEi: T =T’

<7

FH: WV

FR:T

+ (H,R,B)

vV v vV v v Vv




Typechecking Values




Typechecking Values

V:TFn:int




Typechecking Values

V:TFn:int

rn=r
V:lkr:r




Typechecking Values

V:TFn:int
rn=r
V:[kr:T




Subtyping

e A program won't crash if the register file has more values that
are needed to satisfy the typing conditions

e Formally, a register file with more components is a subtype of a
register file with fewer components:

{I’1:T1,...,/’,‘:T/;I’/+1:T }<{f1 7'1,...,,':7','}
Note that this is the ordinary rule for records!

e Code subtyping goes in the opposite direction: a label requiring
ri and r, may be used as a label requiring ry, r;, and rs.

r<r
r—{<r-{

Note that this is the ordinary contravariant rule for functions!




Subtyping

e Subtyping is also reflexive and transitive.

e A subsumption rule allows values to be used at supertypes:

V:Iv:m <7
V:[-v:n




Typing Instructions

(Wil =T

e [, describes the registers before the execution of the
instruction—a precondition

e [, describes the registers after the execution of the
instruction—a postcondition

e Vjsinvariant. Thatis, the types of objects on the heap will not
change (at least for now...)



Typing Instructions

(Wil =T,

Arithmetic operations

V.l Fr:int U: [ Fv:int
Vit aoprg,r,v:T — [rg:=int

Conditional branches
VT Fr:int V:rEv: I —{}
Vibopr,v:l —T

Data movement
V:lv:T
VEmovrgv:l —Trg:=7]

19




Typing Instructions

(Wil — T,
Jumps
V:l'Fv:l —{}
Vi jmpv:T —{}
Basic blocks

Vi =T, V:r=8:1, —»{}
Vi, B: Ty —={}

20



Heap, Register File, and Machine Typing

Heaps

dom(H) = dom(V) VL € dom(H). W = H(L) : W(L)
FH:W

Register Files

Vre dom(T). V; {} FR(r) : T(r)
VER:T

Machines

FH:W WER:T WEB:T—{}
- (H,R, B)




Type Safety

The type system satisfies the following theorem:
Theorem (Type Safety)
If X and X —* Y/, then X' is not stuck.




Type Safety

The type system satisfies the following theorem:

Theorem (Type Safety)

If X and X —* Y/, then X' is not stuck.

Proof:

e Progress: if a state is well-typed, then it is not stuck
e Preservation: evaluation preserves types



Type Safety

The type system satisfies the following theorem:

Theorem (Type Safety)

If =X and X —* Y, then ¥’ s not stuck.

Proof:

e Progress: if a state is well-typed, then it is not stuck
e Preservation: evaluation preserves types

Corollary

e Fvery jump in a well-typed program is to a valid label

e Fvery arithmetic operation in a well-typed program is done with
integers—not labels!



Canonical Forms

Lemma
If FH: Vand V=R:T and V:T v : 7 then

e 7 =int implies R(v) = n

e r={n:m,....rc: 7} — {} implies R(v) = L.
Moreover H(L) =B and W =B : {ry :7my,...,r: =} — {}

Proof: by induction on typing derivations...



Progress (jmp Case)

Lemma

If =X, thenthereexistsa ¥, suchthat >, — >,

FH:W VER:T ViEjmpv:T — {}
= (H, R, jmp v)




Progress (jmp Case)

Lemma
If =X, thenthereexistsa ¥, suchthat >, — >,
FH:W VER:T ViEjmpv:T — {}
= (H, R, jmpv)
The third premise must be a derivation that ends in the rule:
V:lv: T
Vi jmpv:T —{}




Progress (jmp Case)

Lemma
If =X, thenthereexistsa ¥, suchthat >, — >,
FH:W VER:T ViEjmpv:T — {}
= (H, R, jmpv)
The third premise must be a derivation that ends in the rule:
V:lv: T
Vi jmpv:T —{}

By Canonical Forms, we have R(v) = L and H(L) = B'.



Progress (jmp Case)

Lemma
If =X, thenthereexistsa ¥, suchthat >, — >,
FH:W VER:T ViEjmpv:T — {}
= (H, R, jmpv)
The third premise must be a derivation that ends in the rule:
V:lv: T
Vi jmpv:T —{}

By Canonical Forms, we have R(v) = L and H(L) = B'. Therefore:

R(v) =L H(L) =B
(H,R,jmp v) — (H,R,B")




Preservation (jmp Case)

Lemma

If = 21 and 21 — Zz then F Zz

FH:W  WER:T  Whjmpv:l — {}
= (H,R,jmp V)




Preservation (jmp Case)

Lemma
If = 21 and 21 — Zz then F Zz

FH:W  WER:T  Whjmpv:l — {}
= (H,R,jmp V)

The third premise must be a derivation that ends in the rule:

V:lv:T
VEjmpv: T — {}




Preservation (jmp Case)

Lemma
If = 21 and 21 — Zz then F Zz

FH:W  WER:T  Whjmpv:l — {}
= (H,R,jmp V)

The third premise must be a derivation that ends in the rule:
V:lv:T
VEjmpv:T —{}
Moreover, the operational rule must be
R(v) =1L H(L) =8
(H7 R?Jmp V) '_> (H7 R) BI)




Preservation (jmp Case)

Lemma
If = 21 and 21 — Zz then F Zz

By Canonical Forms, we have W B : T — {}




Preservation (jmp Case)

Lemma
If = 21 and 21 — Zz then F Zz

By Canonical Forms, we have W B : T — {}

Therefore:

FH:W WER:T  WEB:T—{}
- (H,R, B)




