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Programming Languages

One of the oldest fields in Computer Science...
e \-calculus = Church

e FORTRAN - Backus

e [ISP - McCarthy

e ALGOL 60 — Backus, Naur, Perlis, & others
e Pascal — Wirth

e C —Ritchie

e Smalltalk — Kay & others

e ML — Milner and others

e (++ — Stroustrup

e Haskell — Hudak, Peyton Jones, Wadler, & others
e Java - Gosling
o C# - Microsoft
e Scala — Odersky
e F#-Syme



Programming Languages

..and one of the most vibrant areas today!
PL intersects with many other areas of computing

Current trends

e Domain-specific languages

e Static analysis and types

e |Language-based security

e Verification and model checking
e Concurrency

Both theoretically and practically “meaty”



Syllabus



Course Staff

Instructor
Nate Foster
Office: Upson 4137
Hours: Mon 4-5pm and Wed 11am-12pm

Teaching Assistants
TBA

Web Page
http://www.cs.cornell.edu/Courses/cs4110/2012fa
http://bit.1y/CS4110

Discussion

http://www.piazza.com



Course Goals

e Techniques for modeling programs* mathematically
» Operational, axiomatic, and denotational semantics
» Examples with advanced features
» Reasoning principles (induction, co-induction)
e Explore applications of these techniques
» Optimization
» Type systems
» Verification
e Gain experience implementing languages
» Interpreters
» Program transformations
» Analysis tools
e PhD students: cover material for PL qualifying exam
e Have fun =)
*and whole languages!



Prerequisites

Mathematical Maturity

e Much of this class will involve formal reasoning
e Set theory, formal proofs, induction
e Most challenging topic: denotational semantics

Programming Experience

e Comfortable using a functional language
e Forundergrads: CS 3110 or equivalent

Interest (having fun is a goal! --)

If you don't meet these prerequisites, get in touch
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Course Work

Participation (5%)

e |ectures

e Office hours

e Coffee

e Piazza discussions
Homework (40%)

e 11 assignments, roughly one per week
e Mix of theory and practice
Preliminary Exams (15% each)
e QOctober st

e November 14th

Final Exam (25%)

e December 12th



Academic Integrity

Two simple requests:

1. You are here as members of an academic community. Conduct
yourself with integrity.

2. If you aren't sure what is allowed and what isn't, please ask!



Special Needs and Wellness

e | will provide reasonable accommodations to students who
have a documented disability (e.g., physical, learning, psychiatric,
vision, hearing, or systemic).

e If you are experiencing undue personal or academic stress at
any time during the semester (or if you notice that a fellow
student is), contact me, Engineering Advising, or Gannett.



Language Specification



Language Specification

Formal Semantics: what do programs mean?
Three Approaches

e Operational

» Models program by its execution on abstract machine
» Useful forimplementing compilers and interpreters

e Axiomatic

» Models program by the logical formulas it obeys
» Useful for proving program correctness

e Denotational

» Models program literally as mathematical objects
» Useful for theoretical foundations



Language Specification

Formal Semantics: what do programs mean?
Three Approaches

e Operational

» Models program by its execution on abstract machine
» Useful forimplementing compilers and interpreters

e Axiomatic

» Models program by the logical formulas it obeys
» Useful for proving program correctness

e Denotational

» Models program literally as mathematical objects
» Useful for theoretical foundations

Question: few languages have a formal semantics. Why?



Formal Semantics

Too Hard?

e Modeling a real-world language is hard

e Notation can gets very dense

e Sometimes requires developing new mathematics
* Not yet cost-effective for everyday use

Overly General?

e Explains the behavior of a program on every input

e Most programmers are content knowing the behavior of their
program on this input (or these inputs)

Okay, so who needs semantics?



A Tricky Example

Question #1: is the following Java program legal?

Question #2: if yes, what does it do?

class A { staticinta=Bb+1; }
class B { staticintb=Aa+1;}




Who Needs Semantics?

Unambiguous Description

e Anyone who wants to design a new feature
e Basis for most formal arguments
e Standard tool in PL research

Exhaustive Reasoning

Sometimes have to know behavior on all inputs
Compilers and interpreters

Static analysis tools

Program transformation tools

Critical software



Language Design



Design Desiderata

Question: What makes a good programming language?
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Wrong! Are COBOL and JavaScript the best languages?



Design Desiderata

Question: What makes a good programming language?
One answer: “a good language is one people use”
Wrong! Are COBOL and JavaScript the best languages?

Some good features:

e Simplicity (clean, orthogonal constructs)
Readability (elegant syntax)

Safety (guarantees that programs won't “go wrong”)
Support for programming in the large (modularity)
Efficiency (good execution model and tools)



Design Challenges

Unfortunately these goals almost always conflict.

e Types provide strong guarantees but restrict expressiveness.

e Safety checks eliminate errors but have a cost—either at
compile time or run time.

e Some verification tools are so complicated, you essentially need
a PhD to use them!



Design Challenges

Unfortunately these goals almost always conflict.

e Types provide strong guarantees but restrict expressiveness.

e Safety checks eliminate errors but have a cost—either at
compile time or run time.

e Some verification tools are so complicated, you essentially need

a PhD to use them!

A lot of research in programming languages is about discovering
ways to gain without (too much) pain.



Story: Unexpected Interactions

A real story illustrating the perils of language design
Cast of characters includes famous computer scientists
Timeline:

e 1982: ML is a functional language with type inference,
polymorphism (generics), and monomorphic references
(pointers)

e 1985: Standard ML innovates by adding polymorphic references
— unsoundness

e 1995: The “innovation” fixed



ML Type System

Polymorphism: allows code to be used at different types
Examples:

e List.length : Va. alist — int
e List.hd : Va. alist = «

Type Inference: e ~» 1

° eg,letid(x) =x~ Va. a = «
e Generalize types not constrainted by the program
e |nstantiate types at use id (true) ~~ bool

Z



ML References

By default, values in ML are immutable.
But we can easily extend the language with imperative features.
Add reference types of the form 7 ref

Add expressions of the form

refe: 7 ref wheree: 7 (allocate)
le: 71 where e : T ref (dereference)
e; :=e,:unit wheree; : Trefande, : 7 (assign)

Works as you'd expect (like pointers in C).

22



Polymorphism + References

Consider the following program

Code Type Analysis

letid = (fun x -> X)
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Polymorphism + References

Consider the following program

Code
letid = (fun x -> X)
let p=refid
letinc = (funn->n+1)

p=ing

(Ip) true

Type Analysis
id:a— «a
p:(a— «)ref

inc :int — int




Polymorphism + References

Consider the following program

Code
letid = (fun x -> X)
let p=refid
letinc = (funn->n+1)

p=ing

(Ip) true

Type Analysis
id:a—a«
p:(a— «)ref
inc : int — int
OKsince p : (int — int) ref
OKsince p : (bool — bool) ref




Polymorphism + References

Problem

e Type system is not sound
e Well-typed program —* type error!

24



Polymorphism + References

Problem

e Type system is not sound
e Well-typed program —* type error!

Proposed Solutions

1. "Weak” type variables
» Can only be instantiated in restricted ways
» But type exposes functional vs. imperative
» Difficult to use

24



Polymorphism + References

Problem

e Type system is not sound
e Well-typed program —* type error!

Proposed Solutions

1. "Weak” type variables
» Can only be instantiated in restricted ways
» But type exposes functional vs. imperative
» Difficult to use

2. Value restriction

» Only generalize types of values
» Most ML programs already obey it
» Simple proof of type soundness

24



Lessons Learned

Features often interact in unexpected ways

The design space is huge

Good designs are sparse and don't happen by accident

Simplicity is rare: n features — n? interactions

Most PL researchers work with really small languages (e.g,,
A-calculus) to study core issues in isolation

But must pay attention to whole languages too



