CS4110

Programming Languages & Logics

Lecture 1
Course Overview

22 August 2012

Programming Languages

One of the oldest fields in Computer Science...
e \-calculus = Church

e FORTRAN - Backus

e [ISP - McCarthy

e ALGOL 60 — Backus, Naur, Perlis, & others
e Pascal — Wirth

e C —Ritchie

e Smalltalk — Kay & others

e ML — Milner and others

e (++ — Stroustrup

e Haskell — Hudak, Peyton Jones, Wadler, & others
e Java - Gosling
o C# - Microsoft
e Scala — Odersky
e F#-Syme

Programming Languages

..and one of the most vibrant areas today!
PL intersects with many other areas of computing

Current trends

e Domain-specific languages

e Static analysis and types

e |Language-based security

e Verification and model checking
e Concurrency

Both theoretically and practically “meaty”

Syllabus

Course Staff

Instructor
Nate Foster
Office: Upson 4137
Hours: Mon 4-5pm and Wed 11am-12pm

Teaching Assistants
TBA

Web Page
http://www.cs.cornell.edu/Courses/cs4110/2012fa
http://bit.1y/CS4110

Discussion

http://www.piazza.com

Course Goals

e Techniques for modeling programs* mathematically
» Operational, axiomatic, and denotational semantics
» Examples with advanced features
» Reasoning principles (induction, co-induction)
e Explore applications of these techniques
» Optimization
» Type systems
» Verification
e Gain experience implementing languages
» Interpreters
» Program transformations
» Analysis tools
e PhD students: cover material for PL qualifying exam
e Have fun =)
*and whole languages!

Prerequisites

Mathematical Maturity

e Much of this class will involve formal reasoning
e Set theory, formal proofs, induction
e Most challenging topic: denotational semantics

Programming Experience

e Comfortable using a functional language
e Forundergrads: CS 3110 or equivalent

Interest (having fun is a goal! --)

If you don't meet these prerequisites, get in touch

! 1_j¢~ Comnell University

& Department of
Computer Science

CS 4110 (Fall 2010)
Programming Languages and Logics
MWF 9:00-9:50

Upsen 111

ome Syllabus Schedule Resources

Date Topic Notes Reading Assignments 120ctaber More types PDF HW7 out
22 August Introduction PDF Winskell 15 0ctober Record types PDF

24 August Smal step semantics PDF Winskel2 HW1out 17 Oetaber Subtyping PDF

27 August Inductive definitions and proofs PDF 19 Octaber Polymorphism PDF HWE out
29 August Large step semantes POF 25 October More palymarphism PDF

31 August wep PDF HW2 out 27 Octaber Typeinference PDF

3September Mo dlass [Labar Day} 29 October Propasitions-as-types PDF HW9 out
SSeptember IMP properties PDF 1 November Existentialtypes PDF

7September Denottional semantics POF HW3 out INovemoer | Objeds PDF

10September Denotational semantics PoF S Navember Featherweight Java PDF HWI0aut
12September Axiomaticsemantics PDF 8MNavember Featherweight Javatypes PDF

145eptember Hoarelogic PDF HWa out 10November | Review PDF

17September | hcakulus POF 12Novemer | Preliminary Exam Il

195eptember Maore A-aleulus POF 15Novemaer | Abstactimerpretation PDF

2September h-cakulus encadings PDF HWS out 17Navember Concurrency PDF

245eptember | Recursion POF 19November | Marecancurrency PDF HWI aut
265eptember Definitional translation POF 22MNovember | Language based security PDF

2BSeptember | Review PDF 24November | Coq PDF

10ctober Preliminary Exam | 26 November No dlass (Thanksgivir

3October Continuations PDF 29November | MoreCog PDF

5 Getober Mare continuations. POF HWS ot 1 December Current trends in PL research PDF

&0ctaber No class [Fall Break] 3 Decembier) b il

100ctaber Types. PDF 13December | FinalExam

CS 4110 (Fall 2010)
Programming Languages and Logics
MWF 9:00-9:50

Upsen 111

Comnell University
Department of
Computer Science

Schedule Resources

Date 12 0ctaber More types PDF HW7 out
22 August 15 0ctaber Record types PDF

24 August 17 Oetaber Subtyping PDF

27 August 19 Octaber Folymarghism PDF HWB out
29 August 25 October More polymorphism PDF

31 August nep PDF HW2 out 27 Catober Typeinference PDF

3September Mo dlass [Labar Day} 29 October Propasitions-as-types PDF HW9 out
SSeptember IMP properties PDF 1 November Existentialtypes PDF

TSeptember Denottional semantics POF HW3 out INovemoer | Objeds PDF

10September Denotational semantics POF S Navember Featherweight Java PDF HWI0aut
12September Axiomaticsemantics PDF 8MNavember Featherweight Javatypes PDF

145eptember Hoarelogic PDF HWa out 10November | Review PDF

17September | hcakulus POF 12November | Preliminary Exam Il

195eptember Maore A-caleulus POF 15Novemaer | Abstractimerpretation PDF

2September h-cakulus encodings PDF HWS out 17Navember | Cancurrency PDF

24September | Recursion POF 19 November | Marecancurrency PDF HWI out
265eptember Definitional translation POF 22Movember | Language based security PDF

2BSeptember Review PDF 24November | Coq PDF

10ctober Preliminary Exam| 26 November No dlass (Thanksgivir

3October Continuations PDF 29November | MoreCog PDF

5 Getober Mare continuations. POF HWS ot 1 December Current trends in PL research PDF

&Octaber No class [Fall Break] e feven e

100ctaber Types. PDF 13December FinalExam

CS 4110 (Fall 2010)

Programming Languages and Logics
MWF 9:00-9:50

Upsen 111

Comnell Uni\-:fls'ty
Department
Computer Science

abus Schedule

12 0ctaber Maretypes PDF HW7 out
15 0ctaber Record types PDF
17 Oetaber Subtyping PDF
19 Octaber Folymarghism PDF HWB out
25 Cetaber Mare polymarphism PDF
27 Catober Typeinference PDF
29 Oataber Fropasitians as types PDF HW9 out
1 November Existentialtypes PDF
INovemoer | Objects PDF
S Nawember Featherweight Java PDF HWI0aut
8MNavember Featherweight Javatypes PDF
10November | Review PDF
17September hecakulus 12November | Preliminary Exam I
19September Mare h-calculus. POF 15 November Abstract interpretation PDF
2September h-cakulus encodings PDF HWS out 17Navember | Cancurrency PDF
24September | Recursion POF 19 November | Marecancurrency PDF HWI out
265eptember Definitional translation PDF 22Movember | Language based security PDF
2BSeptember Review PDF 24November | Coq PDF
10ctober Prefiminary Exam| 26 November Nao class (Than ksgivir
30ctaber Continuations. PDF 29November | MoreCog PDF
5 Octaber Mare continuatians POF HWS ot 1 December Current trends in PL research PDF
80atober No class (Fall Break) SDesmbe feven e

100ctaber Types. PDF 13December FinalExam

CS 4110 (Fall2010)

Programming Languages and Logics
MWF 9:00-9:50
Upsen 111

Comnell lhi\-;ﬁlt}r
Computer Science

abus Schedule Resources

12 0ctaber Maretypes PDF HW7 out
15 0ctaber Record types PDF
17 Oetaber Subtyping PDF
19 Octaber Folymarghism PDF HWB out
25 Cetaber Mare polymarphism PDF
27 Catober Typeinference PDF
29 Oataber Fropasitians as types PDF HW9 out
1 November Existentialtypes PDF
INovemoer | Objects PDF
S Nawember Featherweight Java PDF HWI0aut
8MNavember Featherweight Javatypes PDF
10November | Review PDF
12November | Preliminary Exam Il
15Novemaer | Abstractimerpretation PDF
17Navember | Cancurrency PDF
19 November | Marecancurrency PDF HWI out
22Movember | Language based security PDF
24November | Coq PDF
10ctober Prefiminary Exam| 26 November No dlass (Thanksgiving)
29November | MoreCog PDF
1 December Current trends in PL research PDF
80atober No class (Fall Break) SDesmbe feven e

100ctaber Types. PDF 13December FinalExam

CS 4110 (Fall2010)

Programming Languages and Logics
MWF 9:00-9:50
Upsen 111

Comnell lhi\-;ﬁlt}r
Computer Science

abus Schedule Resources

12 0ctaber Maretypes PDF HW7 out

15 0ctaber Record types PDF
17 Oetaber Subtyping PDF
19 Octaber Folymarghism PDF HWB out
25 Cetaber Mare polymarphism PDF
27 Catober Typeinference PDF
29 Oataber Fropasitians as types PDF HW9 out
1 November Existentialtypes PDF
INovemoer | Objects PDF
S Nawember Featherweight Java PDF HWI0aut
8MNavember Featherweight Javatypes PDF
10November | Review PDF
12November | Preliminary Exam Il
15Novemaer | Abstractimerpretation PDF
17Navember | Cancurrency PDF
19 November | Marecancurrency PDF HWI out
22Movember | Language based security PDF
24November | Coq PDF
26Movember | Noclass (Thanksgiving}
29November | MoreCog PDF
1 December Current trends in PL research PDF

80atober No class (Fall Break) SDesmbe feven e

100ctaber Types. PDF 13December FinalExam

CS 4110 (Fall2010)

Programming Languages and Logics
MWF 9:00-9:50
Upsen 111

Comnell lhi\-;ﬁlt}r
Computer Science

abus Schedule Resources

12 Gctaber Moretypes PDF HW7 aut
15 Octaber Record types PDF
17 Gasber Subtyping PDF
19 Gataber Paiymeranism PDF HWEout
25 Octaber Mare polymarphism PDF
27 October Type nference PDF
29 October Propasitions-as types PDF HW9aut
i November | Existental ypes PDF
INovember Objects PDF
SNovember Femtherweight Jsva PDF HW10 aut
SNovember | Featherweight Jsva types PDF
10November | Review PDF
12November | Prefiminary Exam I
15November | Abstractinterpretation PDF
17November Concurrency PDF
19November | More concurency PDF HWTT aut
ZiNovember | Language based security PDF
ZaNovemzer €oq PDF
26Novemer | Nacass (Thanksgiving)
HNovember | MoreCog PDF
IDecember | Currenttrends in PL research PDF
- Fall Break FDesemne Fevew wor

100ctaber Types. PDF 13December FinalExam

CS 4110 (Fall2010)

Programming Languages and Logics
MWF 9:00-9:50

Upsen 111

Comnell lhi\-;ﬁit}r
Computer Science

Syllabus Schedule

12Navember | Preliminary Exam|l
15November | Abstadt interpretation PDF
17November Concurrency PDF
19Navember | More cancuniency PDF HWI out
2November | Language based securty PDF
Z4November | Coq PDF
26November | Nochass (Thanksgiving]
29November | MoreCon PDF
IDecember | Currentirends n PL research PDF
Fall Break IDecember | Review PDF

13December FinalExam

CS 4110 (Fall2010)

Programming Languages and Logics
MWF 9:00-9:50

Upsen 111

Comnell lhi\-;ﬁit}r
Computer Science

m Syllabus Schedule Resources

T5 November | Abstactinterpretation

17November | Coneurrency PDF
19 November | Moreconcurrency PDF HWIT out
22Movember | Language based security PDF

4MNovember | Cog PDF

26Movember | Noclass (Thanksgiving}

29November | MoreCog PDF

1 December Currenttrends in PL research PDF

3December Review PDF

13December FinalExam

CS 4110 (Fall2010) Cornell University
of

Programming Languages and Logics Department
MWF 9:00-9:50 Computer Science
Upsen 111

Home Syllabus Schedule Resources

- Fall Break

13December FinalExam

CS 4110 (Fall2010)

Programming Languages and Logics
MWF 9:00-9:50

Upsen 111

Cornell thiu:;sity
Computer Science

Home Syllabus Schedule Resources

- Fall Break

CS 4110 (Fall 2010)

Programming Languages and Logics } Department of
MWF 9:00-9:50 Computer Science
Upsen 111

Foundations of Computing Series
The Formal
Semantics of
Programming
Languages

Types and

Programming

An Infroduction

Languages

Benjamin C. Pierce

Glynn Winskel

Course Work

Participation (5%)

e |ectures

e Office hours

e Coffee

e Piazza discussions
Homework (40%)

e 11 assignments, roughly one per week
e Mix of theory and practice
Preliminary Exams (15% each)
e QOctober st

e November 14th

Final Exam (25%)

e December 12th

Academic Integrity

Two simple requests:

1. You are here as members of an academic community. Conduct
yourself with integrity.

2. If you aren't sure what is allowed and what isn't, please ask!

Special Needs and Wellness

e | will provide reasonable accommodations to students who
have a documented disability (e.g., physical, learning, psychiatric,
vision, hearing, or systemic).

e If you are experiencing undue personal or academic stress at
any time during the semester (or if you notice that a fellow
student is), contact me, Engineering Advising, or Gannett.

Language Specification

Language Specification

Formal Semantics: what do programs mean?
Three Approaches

e Operational

» Models program by its execution on abstract machine
» Useful forimplementing compilers and interpreters

e Axiomatic

» Models program by the logical formulas it obeys
» Useful for proving program correctness

e Denotational

» Models program literally as mathematical objects
» Useful for theoretical foundations

Language Specification

Formal Semantics: what do programs mean?
Three Approaches

e Operational

» Models program by its execution on abstract machine
» Useful forimplementing compilers and interpreters

e Axiomatic

» Models program by the logical formulas it obeys
» Useful for proving program correctness

e Denotational

» Models program literally as mathematical objects
» Useful for theoretical foundations

Question: few languages have a formal semantics. Why?

Formal Semantics

Too Hard?

e Modeling a real-world language is hard

e Notation can gets very dense

e Sometimes requires developing new mathematics
* Not yet cost-effective for everyday use

Overly General?

e Explains the behavior of a program on every input

e Most programmers are content knowing the behavior of their
program on this input (or these inputs)

Okay, so who needs semantics?

A Tricky Example

Question #1: is the following Java program legal?

Question #2: if yes, what does it do?

class A { staticinta=Bb+1; }
class B { staticintb=Aa+1;}

Who Needs Semantics?

Unambiguous Description

e Anyone who wants to design a new feature
e Basis for most formal arguments
e Standard tool in PL research

Exhaustive Reasoning

Sometimes have to know behavior on all inputs
Compilers and interpreters

Static analysis tools

Program transformation tools

Critical software

Language Design

Design Desiderata

Question: What makes a good programming language?

Design Desiderata

Question: What makes a good programming language?

One answer: “a good language is one people use”

Design Desiderata

Question: What makes a good programming language?
One answer: “a good language is one people use”

Wrong! Are COBOL and JavaScript the best languages?

Design Desiderata

Question: What makes a good programming language?
One answer: “a good language is one people use”
Wrong! Are COBOL and JavaScript the best languages?

Some good features:

e Simplicity (clean, orthogonal constructs)
Readability (elegant syntax)

Safety (guarantees that programs won't “go wrong”)
Support for programming in the large (modularity)
Efficiency (good execution model and tools)

Design Challenges

Unfortunately these goals almost always conflict.

e Types provide strong guarantees but restrict expressiveness.

e Safety checks eliminate errors but have a cost—either at
compile time or run time.

e Some verification tools are so complicated, you essentially need
a PhD to use them!

Design Challenges

Unfortunately these goals almost always conflict.

e Types provide strong guarantees but restrict expressiveness.

e Safety checks eliminate errors but have a cost—either at
compile time or run time.

e Some verification tools are so complicated, you essentially need

a PhD to use them!

A lot of research in programming languages is about discovering
ways to gain without (too much) pain.

Story: Unexpected Interactions

A real story illustrating the perils of language design
Cast of characters includes famous computer scientists
Timeline:

e 1982: ML is a functional language with type inference,
polymorphism (generics), and monomorphic references
(pointers)

e 1985: Standard ML innovates by adding polymorphic references
— unsoundness

e 1995: The “innovation” fixed

ML Type System

Polymorphism: allows code to be used at different types
Examples:

e List.length : Va. alist — int
e List.hd : Va. alist = «

Type Inference: e ~» 1

° eg,letid(x) =x~ Va. a = «
e Generalize types not constrainted by the program
e |nstantiate types at use id (true) ~~ bool

Z

ML References

By default, values in ML are immutable.
But we can easily extend the language with imperative features.
Add reference types of the form 7 ref

Add expressions of the form

refe: 7 ref wheree: 7 (allocate)
le: 71 where e : T ref (dereference)
e; :=e,:unit wheree; : Trefande, : 7 (assign)

Works as you'd expect (like pointers in C).

22

Polymorphism + References

Consider the following program

Code Type Analysis

letid = (fun x -> X)

Polymorphism + References

Consider the following program

Code Type Analysis
letid = (fun x -> X)

let p=refid

Polymorphism + References

Consider the following program

Code Type Analysis
letid = (fun x -> X)
let p=refid

letinc = (funn->n+1)

Polymorphism + References

Consider the following program

Code Type Analysis
letid = (fun x -> X)
let p=refid
letinc = (funn->n+1)

p=ing

(Ip) true

Polymorphism + References

Consider the following program

Code Type Analysis
letid = (fun x -> X) id:a— «a
let p=refid

letinc = (funn->n+1)

p=ing

(Ip) true

Polymorphism + References

Consider the following program

Code
letid = (fun x -> X)
let p=refid
letinc = (funn->n+1)

p=ing

(Ip) true

Type Analysis
id:a—a«

p:(a— «)ref

Polymorphism + References

Consider the following program

Code
letid = (fun x -> X)
let p=refid
letinc = (funn->n+1)

p=ing

(Ip) true

Type Analysis
id:a— «a
p:(a— «)ref

inc :int — int

Polymorphism + References

Consider the following program

Code
letid = (fun x -> X)
let p=refid
letinc = (funn->n+1)

p=ing

(Ip) true

Type Analysis
id:a—a«
p:(a— «)ref
inc : int — int
OKsince p : (int — int) ref
OKsince p : (bool — bool) ref

Polymorphism + References

Problem

e Type system is not sound
e Well-typed program —* type error!

24

Polymorphism + References

Problem

e Type system is not sound
e Well-typed program —* type error!

Proposed Solutions

1. "Weak” type variables
» Can only be instantiated in restricted ways
» But type exposes functional vs. imperative
» Difficult to use

24

Polymorphism + References

Problem

e Type system is not sound
e Well-typed program —* type error!

Proposed Solutions

1. "Weak” type variables
» Can only be instantiated in restricted ways
» But type exposes functional vs. imperative
» Difficult to use

2. Value restriction

» Only generalize types of values
» Most ML programs already obey it
» Simple proof of type soundness

24

Lessons Learned

Features often interact in unexpected ways

The design space is huge

Good designs are sparse and don't happen by accident

Simplicity is rare: n features — n? interactions

Most PL researchers work with really small languages (e.g,,
A-calculus) to study core issues in isolation

But must pay attention to whole languages too

