CS 4110 - Programming Languages and Logics

Lecture #32: Featherweight Java Properties

In this lecture, we will develop a proof of type soundness for Featherweight Java in the usual way, as a
corollary of progress and preservation. The details of these proofs will be a little different than the ones we
have seen before, however, due to the presence of subtyping and casts.

1 Preservation
The proof of preservation relies on several supporting lemmas.

Lemma (Method Typing). If mtype(m,C) = D — D and mbody(m, C') = (T, €) then there exists types C' and
D' suchthat : D, this: C'Fe: D' and D' < D.

Lemma (Substitution). If I,Z : B - e : Cand T - u : B with B’ < B then there exists C' such that
'tz —ale: C'and C' < C.

Lemma (Weakening). If'-e: Cthen',xz : Bt e: C.
Lemma (Decomposition). IfI' - Ele] : C then there exists a type B such thatI' - e : B

Lemma (Context). IfI' - Ele] : CandT' &t e : BandT' & €' : B’ with B’ < B then there exists a type C' such
that T+ Ele] : C"and C' < C.

Lemma (Preservation). IfI' - e : Cand e — € then there exists a type C' such that T+ €' : C"and C" < C.

Proof. By induction on e — €/, with a case analysis of the last rule used in the derivation.

Case E-Context: e = Elej]and e; — €| and € = El[¢]]
By the decomposition lemma we have that there exists a type B such that I' = e; : B. By the
induction hypothesis applied to e; we have that there exists a type B’ such that I' - ¢} : B’ and
B’ < B. Then, by the context lemma we have that there exists a type C’ such that I" - El[¢}] : C’
and C’ < C, as required.

Case E-Proj: e = new Cy(?).f; and €/ = v; with fields(Cy) = C f

As the typing rules for Featherweight Java are syntax-directed, the last rule used in the derivation of
I' F e : C must have been T-FieLD. Therefore we must also have a derivation I' - new Cp(7) : Dy
with fields(Dgy) = D g and C' = D;. By a similar argument, the last rule used in this derivation must
have been T-New and so Dy = Cjy and we have derivations I' - 7 : B with B < D. From Dy = Cj
(and as fields is a function) we have C f =D g,and hence C = C;. Thus, I' - v; : B; with B; < G,
as required.

Case E-Invk: ¢ = (new Cy(v)).m(u) and ¢’ = [T +— u,this — new Cy(v)]e with mbody(m,Cy) =

(7,e)

By similar reasoning as in the previous case, the last two rules in the derivation of I' - e : C' must
have been T-INvk and T-New with I" - new Cy(v) : Cypand I' - % : B and mtype(m, Co) = C — C
with B < C. By the method typing lemma, there exist types C{ and C’ such that 7 : C, this : C}j I
e : C'. By the substitution lemma we have t- [Z — @, this — new Cy(7)]e : C” with C” < C’. By
weakening we have I' - [T — @, this — new Cp(¥)]e : C”'. The required result follows as C" < C'
by S-TraNs.

Case E-Cast: e = (C) (new Cp(v)) and ¢’ = new Cy(v) with Cp < C

By similar reasoning as the previous cases, the last two rules in the derivation of I' I~ e : C' must have
been T-UCast and T-New with I" - new C(v) : Cp. The result is immediate as C < C.

2 Progress

The proof of progress also relies on a few supporting lemmas.

Lemma (Canonical Forms). If- v : C then v = newC (7).

Lemma (Inversion).
1. If (newC(v)).f; : C; then fields(C) = C fand f; € f.

2. If+ (newC(v)).m(u) : C then mbody(m,C) = (T, e) and |u| = |€|.

Lemma (Progress). Let e be an expression such that = e : C. Then either:

1. eisavalue,

2. there exists an expression €’ such that e — €', or

3. e = E[(B) (new A(v))] with A £ B.
Proof. By induction on - e : C, with a case analysis on the last rule used in the derivation.
Case T-Var: e =z with{)(z) =C

Can’t happen, as ()(z) is undefined.

Case T-Field: e = eg.f with I- g : Cp and fields(Cp) = C f and C = C;

By the induction hypothesis applied to ey we have that either e is a value, there exists e}, such that
ep — €, or there exists E such that ey = Ey[(B) (new A(7))] with A £ B. We analyze each of these
subcases:

1. If eg is a value then by the canonical forms lemma, ey = new Cj(7) and by the inversion lemma
f € f. By E-Proj we have e — v;.

2. Alternatively, if there exists an expression such that ey — ¢{, then by E-CONTEXT we have e =
Eleg] — Ele(] where E = [-].f.

3. Otherwise, if g = Ey[(B) (new A(v))] with A £ B then we have e = E[(B) (new A(7))]
where E' = [-]. f, which finishes the case.

Case T-Invk: e = eg.m(€) with - e : Cy and mtype(m,Cy) = B — Cand-e: Aand A < B

By the induction hypothesis applied to ey we have that either e is a value, there exists e, such that
ep — €, or there exists F such that eg = Ey[(B) (new A(7))] with A £ B. We analyze each of these
subcases:

1. If eg is a value then by the canonical forms lemma, eg = new Cy(). If € is a list of values @, then
by the inversion lemma we have |u| = |Z| where mbody(m, Cy) = (T, ¢{)). By E-INVK we have
e — [T — 1, this — new Cy()]e(. Otherwise, let i be the least index of an expression in € that
isnot a value. By the induction hypothesis applied to e; we have that e; is a value, or there exists
e, such that e; — €] or there exists E; such thate; = E;[(B) (new A(7))]and A £ B. In the first
subsubcase, then we have a contradiction to our assumption that ¢ is the index of the least ex-

pression in € thatisnota value. Otherwiselet E = (new Cy(v)).m(e1, ..., ei—1, Ei, €iy1, ... |€]).

In the second subcase, we have e = Ele;| — E|e}] by E-CoNTEXT. In the third subcase, we have
e = E[(B) (new A(v))] with A £ B.

2. Alternatively, if there exists an expression such that ey — ¢{, then by E-CoNnTEXT we have
Eleg] — Ele(] where E = [].m(€).

3. Otherwise, if g = Ey[(B) (new A(v))] with A £ B then we have e = E[(B) (new A(7))]
where E = [].m(€), which finishes the case.

Case T-New: ¢ = new C(€) and fields(C) = C fande: Band B < C

If e is a list of values u, then e is a value. Otherwise, let i be the least index of an expression in e that
is not a value. By the induction hypothesis applied to ¢; we have that ¢; is a value, or there exists €}
such that e; — €} or there exists E; such that e; = E;[(B) (new A(v))] and A £ B. We analyze each
of these subcases:

1. If e; is a value then we have a contradiction to our assumption that 7 is the index of the least
expression in e that is not a value.

2. If there exists €] such that e; — ¢ then let E = (new C(ey,...,€;—1, Ej,€i41,...,|€]). By
E-ConTEXT we have e = Ele;] — Elel].

3. Otherwise, if there exists E; withe; = E;[(B) (new A(7))]and A £ Bthenlet E = (newC(ey, .
By construction we have e = E[(B) (new A(7))], which finishes the case.

Case T-UCast: e = (C)ewithep: Dand D < C

By the induction hypothesis applied to ey we have that either e is a value, there exists e, such that
ep — €, or there exists F such that eg = Ey[(B) (new A(v))] with A £ B. We analyze each of these
subcases:

1. If e is a value then by the canonical forms lemma, ey = new D(v). By E-Cast we have e —
new D(7).

ey €i—1, Eia Ci+

2. Alternatively, if there exists an expression such that ey — ¢{, then by E-CONTEXT we have e =
Eleg] — Ele(] where E = (C) [].

3. Otherwise, if g = Ey[(B) (new A(v))] with A £ B then we have e = E[(B) (new A(7))]
where E = (C) [-], which finishes the case.
Case T-DCast: ¢ = (C)ewith-ep: Dand C < Dand C # D

By the induction hypothesis applied to ey we have that either e is a value, there exists e, such that
ep — €, or there exists F such that eg = Ey[(B) (new A(7))] with A £ B. We analyze each of these
subcases:

1. If eg is a value then by the canonical forms lemma we have that e = new D (7). Let E = [-]. We
immediately e = E[(C) new C(7)| with D £ C.

2. Alternatively, if there exists an expression such that ey — ¢{, then by E-CONTExT we have e =
Eleo) — Elep) where E = (C) [-].

3. Otherwise, if g = Ey[(B) (new A(v))] with A £ B then we have e = E[(B) (new A(7))]
where E = (C) [-], which finishes the case.

Case T-SCast: similar to the previous case.

