
.

. .
CS 4110 – Programming Languages and Logics
Lecture #23: Programming in System F

.

Recall the de nition of System F.

Syntax.

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]
v ::= n | λx :τ. e | ΛX. e

E ::= [·] | E e | v E | E [τ]

Semantics.

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (ΛX. e) [τ] → e{τ/X}

Type System.

∆,Γ ⊢ n : int ∆,Γ ⊢ x :τ
Γ(x) = τ

∆,Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆,Γ ⊢ λx :τ. e :τ → τ ′

∆,Γ ⊢ e1 :τ → τ ′ ∆,Γ ⊢ e2 :τ

∆,Γ ⊢ e1 e2 :τ
′

∆ ∪ {X},Γ ⊢ e :τ

∆,Γ ⊢ ΛX. e :∀X. τ

∆,Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆,Γ ⊢ e [τ] :τ ′{τ/X}

Type Well Formedness.

∆ ⊢ X ok
X ∈ ∆

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok

∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok

∆ ⊢ ∀X. τ ok

Sums and Products

We can encode sums and products in System F without adding additional types! The encodings are based
on the Church encodings from untyped λ-calculus.

1

τ1 × τ2 , ∀R. (τ1 → τ2 → R) → R

(·, ·) , ΛT1. ΛT2. λv1 : T1, λv2 : T2. ΛR. λp : (T1 → T2 → R). p v1 v 2

π1 , ΛT1. ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)

π2 , ΛT1. ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

unit , ∀R. R → R

() , ΛR. λx : R. x

τ1 + τ2 , ∀R.(τ1 → R) → (τ2 → R) → R

inl , ΛT1. ΛT2. λv1 : T1. ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr , ΛT1. ΛT2. λv2 : T2. ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case , ΛT1. ΛT2. . ΛR. λv : T1 + T2. λb1 : T1 → R. λb2 : T2 → R. v [R] b1 b2

void , ∀R. R

Erasure

The semantics of System F presented above explicitly passes type. In an implementation, one often wants
to eliminate types for ef ciency. The following translation “erases” the types from a System F expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ]) = erase(e) (λx. x)

The following theorem states that the translation is adequate.

Theorem (Adequacy). For all expressions e and e′, we have e → e′ iff erase(e) → erase(e′).

The type reconstruction problem asks whether, for a given untyped λ-calculus expression e′ there exists
a well-typed System F expression e such that erase(e) = e′. It was shown to be undecidable by Wells in
1994, by showing that type checking is undecidable for a variant of untypedλ-calculuswithout annotations.
See Pierce Chapter 23 for further discussion, and restrictions of System F for which type reconstruction is
decidable.

2

