Recall the definition of System F.

Syntax.

$$
\begin{aligned}
e & ::=n|x| \lambda x: \tau . e\left|e_{1} e_{2}\right| \Lambda X . e \mid e[\tau] \\
v & ::=n|\lambda x: \tau . e| \Lambda X . e \\
E & ::=[\cdot]|E e| v E \mid E[\tau]
\end{aligned}
$$

Semantics.

$$
\frac{e \rightarrow e^{\prime}}{E[e] \rightarrow E\left[e^{\prime}\right]} \quad \quad \quad \quad \frac{}{(\lambda x: \tau . e) v \rightarrow e\{v / x\}} \quad \frac{\Lambda X . e)[\tau] \rightarrow e\{\tau / X\}}{}
$$

Type System.

$$
\Delta, \Gamma \vdash n: \text { int } \quad \frac{\Delta, \Gamma, x: \tau \vdash e: \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash x: \tau} \Gamma(x)=\tau \quad \frac{\Delta, \Gamma \vdash \lambda x: \tau . e: \tau \rightarrow \tau^{\prime}}{}
$$

$$
\frac{\Delta, \Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \Delta, \Gamma \vdash e_{2}: \tau}{\Delta, \Gamma \vdash e_{1} e_{2}: \tau^{\prime}} \quad \frac{\Delta \cup\{X\}, \Gamma \vdash e: \tau}{\Delta, \Gamma \vdash \Lambda X . e: \forall X . \tau} \quad \frac{\Delta, \Gamma \vdash e: \forall X . \tau^{\prime} \quad \Delta \vdash \tau \text { ok }}{\Delta, \Gamma \vdash e[\tau]: \tau^{\prime}\{\tau / X\}}
$$

Type Well Formedness.

$$
\frac{}{\Delta \vdash X \text { ok }} X \in \Delta \quad \frac{\Delta \vdash \tau_{1} \text { ok } \Delta \vdash \tau_{2} \text { ok }}{\Delta \vdash \text { int ok }} \quad \frac{\Delta \cup\{X\} \vdash \tau \text { ok }}{\Delta \vdash \tau_{1} \rightarrow \tau_{2} \text { ok }} \quad \frac{\Delta \vdash \forall X . \tau \text { ok }}{}
$$

Sums and Products

We can encode sums and products in System F without adding additional types! The encodings are based on the Church encodings from untyped λ-calculus.

$$
\begin{aligned}
\tau_{1} \times \tau_{2} & \triangleq \forall R .\left(\tau_{1} \rightarrow \tau_{2} \rightarrow R\right) \rightarrow R \\
(\cdot, \cdot) & \triangleq \Lambda T_{1} \cdot \Lambda T_{2} \cdot \lambda v_{1}: T_{1}, \lambda v_{2}: T_{2} \cdot \Lambda R . \lambda p:\left(T_{1} \rightarrow T_{2} \rightarrow R\right) \cdot p v_{1} v 2 \\
\pi_{1} & \triangleq \Lambda T_{1} \cdot \Lambda T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{1}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot x\right) \\
\pi_{2} & \triangleq \Lambda T_{1} \cdot \Lambda T_{2} \cdot \lambda v: T_{1} \times T_{2} \cdot v\left[T_{2}\right]\left(\lambda x: T_{1} \cdot \lambda y: T_{2} \cdot y\right) \\
\text { unit } & \triangleq \forall R . R \rightarrow R \\
() & \triangleq \Lambda R . \lambda x: R \cdot x \\
\tau_{1}+\tau_{2} & \triangleq \forall R \cdot\left(\tau_{1} \rightarrow R\right) \rightarrow\left(\tau_{2} \rightarrow R\right) \rightarrow R \\
\text { inl } & \triangleq \Lambda T_{1} \cdot \Lambda T_{2} \cdot \lambda v_{1}: T_{1} \cdot \Lambda R . \lambda b_{1}: T_{1} \rightarrow R . \lambda b_{2}: T_{2} \rightarrow R \cdot b_{1} v_{1} \\
\text { inr } & \triangleq \Lambda T_{1} \cdot \Lambda T_{2} \cdot \lambda v_{2}: T_{2} \cdot \Lambda R \cdot \lambda b_{1}: T_{1} \rightarrow R \cdot \lambda b_{2}: T_{2} \rightarrow R \cdot b_{2} v_{2} \\
\text { case } & \triangleq \Lambda T_{1} \cdot \Lambda T_{2} . \Lambda R \cdot \lambda v: T_{1}+T_{2} \cdot \lambda b_{1}: T_{1} \rightarrow R . \lambda b_{2}: T_{2} \rightarrow R . v[R] b_{1} b_{2} \\
\text { void } & \triangleq \forall R . R
\end{aligned}
$$

Erasure

The semantics of System F presented above explicitly passes type. In an implementation, one often wants to eliminate types for efficiency. The following translation "erases" the types from a System F expression.

$$
\begin{aligned}
\operatorname{erase}(x) & =x \\
\operatorname{erase}(\lambda x: \tau \cdot e) & =\lambda x \cdot \operatorname{crase}(e) \\
\operatorname{erase}\left(e_{1} e_{2}\right) & =\operatorname{crase}\left(e_{1}\right) \operatorname{erase}\left(e_{2}\right) \\
\operatorname{erase}(\Lambda X . e) & =\lambda z \cdot \operatorname{crase}(e) \\
\operatorname{erase}(e[\tau]) & =\operatorname{erase}(e)(\lambda x \cdot x) \quad \text { where } z \text { is fresh for } e
\end{aligned}
$$

The following theorem states that the translation is adequate.
Theorem (Adequacy). For all expressions e and e^{\prime}, we have $e \rightarrow e^{\prime}$ iff erase $(e) \rightarrow$ erase $\left(e^{\prime}\right)$.
The type reconstruction problem asks whether, for a given untyped λ-calculus expression e^{\prime} there exists a well-typed System F expression e such that $\operatorname{erase}(e)=e^{\prime}$. It was shown to be undecidable by Wells in 1994, by showing that type checking is undecidable for a variant of untyped λ-calculus without annotations. See Pierce Chapter 23 for further discussion, and restrictions of System F for which type reconstruction is decidable.

