
.

. .
CS 4110 – Programming Languages and Logics
Lecture #22: Polymorphism

.

1 Parametric polymorphism

Polymorphism (Greek for “many forms”) is the ability for code to be used with values of different types.
For example, a polymorphic function is one that can be invoked with arguments of different types. A
polymorphic datatype is one that can contain elements of different types.

Several kinds of polymorphism are commonly used in modern programming languages.

• Subtype polymorphism allows a term to have many types using the subsumption rule. For example, a
function with argument τ can operate on any value with a type that is a subtype of τ .

• Ad-hoc polymorphism usually refers to code that appears to be polymorphic to the programmer, but
the actual implementation is not. A typical example is overloading: using the same function name for
functions with different kinds of parameters. Although it looks like a polymorphic function to the
code that uses it, there are actuallymultiple function implementations (none being polymorphic) and
the compiler invokes the appropriate one. Ad-hoc polymorphism is a dispatch mechanism: the type
of the arguments is used to determine (either at compile time or run time) which code to invoke.

• Parametric polymorphism refers to code that is written without knowledge of the actual type of the
arguments; the code is parametric in the type of the parameters. Examples include polymorphic
functions in ML and Java generics.

In this lecture we will consider parametric polymorphism in detail. Suppose we are working in the simply-
typed lambda calculus, and consider a “doubling” function for integers that takes a function f , and an
integer x, applies f to x, and then applies f to the result.

doubleInt , λf : int → int. λx : int. f (f x)

We could also write a double function for booleans. Or for functions over integers. Or for any other type...

doubleBool , λf :bool → bool. λx :bool. f (f x)

doubleFn , λf : (int → int) → (int → int). λx : int → int. f (f x)

...

In the simply-typed λ-calculus, if we want to apply the doubling operation to different types of argu-
ments in the same program, we need to write a new function for each type. This violates a fundamental
principle of software engineering:

Abstraction Principle: Each major piece of functionality in a program should be implemented in just
one place in the code. When similar functionality is provided by distinct pieces of code, the two should be
combined into one by abstracting out the varying parts.

1

In the doubling functions above, the varying parts are the types. We need a way to abstract out the type of
the doubling operation, and later instantiate it with different concrete types.

We extend the simply-typed lambda calculus with abstraction over types, giving the polymorphic lambda
calculus, also called System F.

A type abstraction is a new expression, written ΛX. e, where Λ is the upper-case form of the Greek letter
lambda, and X is a type variable. We also introduce a new form of application, called type application, or
instantiation, written e1 [τ].

When a type abstraction meets a type application during evaluation, we substitute the free occurrences
of the type variable with the type. Note that instantiation does not require the program to keep run-time
type information, or to perform type checks at run-time; it is just used as a way to statically check type
safety in the presence of polymorphism.

1.1 Syntax and operational semantics

The new syntax of the language is given by the following grammar.

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]
v ::= n | λx :τ. e | ΛX. e

The evaluation rules for the polymorphic lambda calculus are the same as for the simply-typed lambda
calculus, augmented with new rules for evaluating type abstractions and applications.

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′]
β-

(λx :τ. e) v → e{v/x}

T-
(ΛX. e) [τ] → e{τ/X}

Let’s consider an example. In this language, the polymorphic identity function is written as

ID , ΛX.λx :X.x

We can apply the polymorphic identity function to int, yielding the identity function on integers.

(ΛX.λx :X.x) [int] → λx : int. x

We can apply ID to other types as easily:

(ΛX.λx :X.x) [int → int] → λx : int → int. x

1.2 Type system

We also need to provide a type for the new type abstraction. The type of ΛX. e is ∀X. τ , where τ is the
type of e, and may contain the type variableX . Intuitively, we use this notation because we can instantiate

2

the type expression with any type for X : for any type X , expression e can have the type τ (which may
mentionX).

τ ::= int | τ1 → τ2 | X | ∀X. τ

Type checking expressions is slightly different than before. Besides the type environment Γ (which
maps variables to types), we also need to keep track of the set of type variables∆. This is to ensure that a
type variable X is only used in the scope of an enclosing type abstraction ΛX. e. Thus, typing judgments
are now of the form∆,Γ ⊢ e : τ , where∆ is a set of type variables, and Γ is a typing context. We also use
an additional judgment∆ ⊢ τ ok to ensure that type τ uses only type variables from the set∆.

∆,Γ ⊢ n : int ∆,Γ ⊢ x :τ
Γ(x) = τ

∆,Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆,Γ ⊢ λx :τ. e :τ → τ ′

∆,Γ ⊢ e1 :τ → τ ′ ∆,Γ ⊢ e2 :τ

∆,Γ ⊢ e1 e2 :τ
′

∆ ∪ {X},Γ ⊢ e :τ

∆,Γ ⊢ ΛX. e :∀X. τ

∆,Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆,Γ ⊢ e [τ] :τ ′{τ/X}

∆ ⊢ X ok
X ∈ ∆

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok

∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok

∆ ⊢ ∀X. τ ok

1.3 Examples

Let’s consider the doubling operation again. We can write a polymorphic doubling operation as

double , ΛX.λf :X → X.λx :X. f (f x).

The type of this expression is
∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments. For example,

double [int] (λn : int. n+ 1) 7 → (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7

→∗ 9

Recall that in the simply-typed lambda calculus, we had no way of typing the expression λx. x x. In
the polymorphic lambda calculus, however, we can type this expression if we give it a polymorphic type
and instantiate it appropriately.

⊢ λx :∀X. X → X.x [∀X. X → X] x : (∀X. X → X) → (∀X. X → X)

3

