
.

. .
CS 4110 – Programming Languages and Logics
Lectures #21: More Types

.

1 More types

Todaywe consider how to extend the type system of lambda calculus for a number of the language features
we saw earlier in the course, along with some new ones.

1.1 Product and sums

We have previously seen products, which are pairs of expressions. Products were constructed using the
expression (e1, e2), and destructed using projection #1 e and #2 e.

In addition to the structural rules, there are two operational semantics rules that show how the destruc-
tors and constructor interact.

#1 (v1, v2) → v1 #2 (v1, v2) → v2

The type of a product expression (or a product type) is a pair of types, written τ1 × τ2. The typing rules
for the product constructors and destructors are the following.

Γ ⊢ e1 :τ1 Γ ⊢ e2 :τ2

Γ ⊢ (e1, e2) :τ1 × τ2

Γ ⊢ e :τ1 × τ2

Γ ⊢ #1 e :τ1

Γ ⊢ e :τ1 × τ2

Γ ⊢ #2 e :τ2

We introduce sums, which are dual to products. Intuitively, a product holds two values, one of type
τ1, and one of type τ2. By contrast, a sum holds a single value that is either of type τ1 or of type τ2. The
type of a sum is written τ1 + τ2. There are two constructors for a sum, corresponding to whether we are
constructing a sum with a value of τ1 or a value of τ2.

e ::= · · · | inlτ1+τ2 e | inrτ1+τ2 e | case e1 of e2 | e3
v ::= · · · | inlτ1+τ2 v | inrτ1+τ2 v

Again, there are structural rules to determine the order of evaluation. In a CBV lambda calculus, the
evaluation contexts are extended as follows.

E ::= · · · | inlτ1+τ2 E | inrτ1+τ2 E | case E of e2 | e3

In addition to the structural rules, there are two operational semantics rules that show how the destruc-
tors and constructors interact.

case inlτ1+τ2 v of e2 | e3 → e2 v case inrτ1+τ2 v of e2 | e3 → e3 v

1

The type of a sum expression (or a sum type) is written τ1+τ2. The typing rules for the sum constructors
and destructor are the following.

Γ ⊢ e :τ1

Γ ⊢ inlτ1+τ2 e :τ1 + τ2

Γ ⊢ e :τ2

Γ ⊢ inrτ1+τ2 e :τ1 + τ2

Γ ⊢ e :τ1 + τ2 Γ ⊢ e1 :τ1 → τ Γ ⊢ e2 :τ2 → τ

Γ ⊢ case e of e1 | e2 :τ

Let’s see an example of a program that uses sum types.

let f = λa : int+ (int → int). case a of (λy. y + 1) | (λg. g 35) in
let h = λx : int. x+ 7 in

f (inrint+(int→int) h)

Here, the function f takes argument a, which is a sum. That is, the actual argument for a will either
be a value of type int or a value of type int → int. We destroy the sum value with a case statement, which
must be prepared to take either of the two kinds of values that the sum may contain. We end up applying
f to a value of type int → int (i.e., a value injected into the right type of the sum). The entire program ends
up evaluating to 42.

1.2 Recursion

We saw in last lecture that we could not type recursive functions or xed-point combinators in the simply-
typed lambda calculus. So instead of trying (and failing) to de ne a xed-point combinator in the simply-
typed lambda calculus, we add a new primitive x to the language. The evaluation rules for the new
primitive will mimic the behavior of xed-point combinators.

We extend the syntax with the new primitive operator. Intuitively, x e is the xed-point of the function
e. Note that x v is not a value.

e ::= · · · | x e

We extend the operational semantics for the new operator. There is a new evaluation context, and a
new axiom.

E ::= · · · | x E x λx :τ. e → e{(x λx :τ. e)/x}

Note that we can de ne the letrec x :τ = e1 in e2 construct in terms of the x operator.

letrec x :τ = e1 in e2 , let x = x λx :τ. e1 in e2

We add a new typing rule for the new language construct.

Γ ⊢ e :τ → τ

Γ ⊢ x e :τ

Returning to our trusty factorial example, the following program implements the factorial function
using the x operator.

FACT , x λf : int → int. λn : int. if n = 0 then 0 else n× (f (n− 1))

2

We can write non-terminating computations for any type: the expression x λx : τ. x has type τ , and
does not terminate.

Although the x operator is normally used to de ne recursive functions, it can be used to nd xed
points of any type. For example, consider the following expression.

x λx : (int → int)× (int → int). (λn : int. if n = 0 then true else (#2 x) (n− 1),

λn : int. if n = 0 then false else (#1 x) (n− 1))

This expression has type (int → int)× (int → int)—it is a pair of mutually recursive functions; the rst
function returns true if and only if its argument is even; the second function returns true if and only if its
argument is odd.

1.3 References

Recall the syntax and semantics for references.

e ::= · · · | ref e | !e | e1 := e2 | ℓ
v ::= · · · | ℓ
E ::= · · · | ref E | !E | E := e | v := E

A
⟨σ, ref v⟩ → ⟨σ[ℓ 7→ v], ℓ⟩

ℓ ̸∈ dom(σ) D
⟨σ, !ℓ⟩ → ⟨σ, v⟩

σ(ℓ) = v

A
⟨σ, ℓ := v⟩ → ⟨σ[ℓ 7→ v], v⟩

We add a new type for references: type τ ref is the type of a location that contains a value of type τ . For
example the expression ref 7 has type int ref, since it evaluates to a location that contains a value of type
int. Dereferencing a location of type τ ref results in a value of type τ , so !e has type τ if e has type τ ref.
And for assignment e1 := e2, if e1 has type τ ref, then e2 must have type τ .

τ ::= · · · | τ ref

Γ ⊢ e :τ

Γ ⊢ ref e :τ ref

Γ ⊢ e :τ ref

Γ ⊢ !e :τ

Γ ⊢ e1 :τ ref Γ ⊢ e2 :τ

Γ ⊢ e1 := e2 :τ

Noticeable by its absence is a typing rule for location values. What is the type of a location value ℓ?
Clearly, it should be of type τ ref, where τ is the type of the value contained in location ℓ. But how do
we know what value is contained in location ℓ? We could directly examine the store, but that would be
inef cient. In addition, examining the store directly may not give us a conclusive answer! Consider, for
example, a store σ and location ℓ where σ(ℓ) = ℓ; what is the type of ℓ?

Instead, we introduce store typings to track the types of values stored in locations. Store typings are
partial functions from locations to types. We use metavariable Σ to range over store typings. Our typing
relation now becomes a relation over 4 entities: typing contexts, store typings, expressions, and types. We
write Γ,Σ ⊢ e :τ when expression e has type τ under typing context Γ and store typing Σ.

Our new typing rules for references are as follows. (Typing rules for other constructs are modi ed to
take a store typing in the obvious way.)

3

Γ,Σ ⊢ e :τ

Γ,Σ ⊢ ref e :τ ref

Γ,Σ ⊢ e :τ ref

Γ,Σ ⊢ !e :τ

Γ,Σ ⊢ e1 :τ ref Γ,Σ ⊢ e2 :τ

Γ,Σ ⊢ e1 := e2 :τ Γ,Σ ⊢ ℓ :τ ref
Σ(ℓ) = τ

So, how do we state type soundness? Our type soundness theorem for simply-typed lambda calculus
said that if Γ ⊢ e : τ and e →∗ e′ then e′ is not stuck. But our operational semantics for references now
has a store, and our typing judgment now has a store typing in addition to a typing context. We need to
adapt the de nition of type soundness appropriately. to do so, we de ne what it means for a store to be
well-typed with respect to a typing context.

De nition. Store σ is well-typed with respect to typing context Γ and store typing Σ, written Γ,Σ ⊢ σ , if
dom(σ) = dom(Σ) and for all ℓ ∈ dom(σ) we have Γ,Σ ⊢ σ(ℓ) :Σ(ℓ).

We can now state type soundness for our language with references.

Theorem (Type soundness). If Γ,Σ ⊢ e :τ and Γ,Σ ⊢ σ and ⟨e, σ⟩ →∗ ⟨e′, σ′⟩ then either e′ is a value, or there
exists e′′ and σ′′ such that ⟨e′, σ′⟩ → ⟨e′′, σ′′⟩.

We can prove type soundness for our language using the same strategy as for the simply-typed lambda
calculus: we use preservation and progress. The progress lemma can be easily adapted for the semantics
and type system for references. Adapting preservation is a little more involved, since we need to describe
how the store typing changes as the store evolves. The rule A extends the store σ with a fresh location
ℓ, producing store σ′. Since dom(Σ) = dom(σ) ̸= dom(σ′), it means that we will not have σ′ well-typed
with respect to typing store Σ.

Since the store can increase in size during the evaluation of the program, we also need to allow the store
typing to grow as well.

Lemma (Preservation). If Γ,Σ ⊢ e : τ and Γ,Σ ⊢ σ and ⟨e, σ⟩ → ⟨e′, σ′⟩ then there exists some Σ′ ⊇ Σ such
that Γ,Σ′ ⊢ e′ :τ and Γ,Σ′ ⊢ σ′.

We writeΣ′ ⊇ Σ to mean that for all ℓ ∈ dom(Σ)we haveΣ(ℓ) = Σ′(ℓ). This makes sense if we think
of partial functions as sets of pairs: Σ ≡ {(ℓ, v) | ℓ ∈ dom(Σ) ∧ Σ(ℓ) = v}.

Note that the preservation lemma states simply that there is some store type Σ′ ⊇ Σ, but does not
specify what exactly that store typing is. Intuitively, Σ′ will wither be Σ, or Σ extended on a single, newly
allocated, location.

4

