
.

. .
CS 4110 – Programming Languages and Logics
Lecture #19: Simply Typed λ-calculus

.

A type is a collection of computational entities that share some common property. For example, the type
int represents all expressions that evaluate to an integer, and the type int → int represents all functions from
integers to integers. The Pascal subrange type [1..100] represents all integers between 1 and 100.

Types can be thought of as describing computations succinctly and approximately: types are a static
approximation to the run-time behaviors of terms and programs. Type systems are a lightweight formal
method for reasoning about behavior of a program. Uses of type systems include: naming and organiz-
ing useful concepts; providing information (to the compiler or programmer) about data manipulated by a
program; and ensuring that the run-time behavior of programs meet certain criteria.

In this lecture, we’ll consider a type system for the lambda calculus that ensures that values are used
correctly; for example, that a program never tries to add an integer to a function. The resulting language
(lambda calculus plus the type system) is called the simply-typed lambda calculus.

1 Simply-typed lambda calculus

The syntax of the simply-typed lambda calculus is similar to that of untyped lambda calculus, with the
exception of abstractions. Since abstractions deàne functions tht take an argument, in the simply-typed
lambda calculus, we explicitly state what the type of the argument is. That is, in an abstraction λx :τ. e, the
τ is the expected type of the argument.

The syntax of the simply-typed lambda calculus is as follows. It includes integer literals n, addition
e1 + e2, and the unit value (). The unit value is the only value of type unit.

expressions e ::= x | λx :τ. e | e1 e2 | n | e1 + e2 | ()
values v ::= λx :τ. e | n | ()
types τ ::= int | unit | τ1 → τ2

The operational semantics of the simply-typed lambda calculus are the same as the untyped lambda calcu-
lus. For completeness, we present the CBV small step operational semantics here.

E ::= [·] | E e | v E | E + e | v + E
C

e → e′

E[e] → E[e′]

β-
(λx :τ. e) v → e{v/x}

A
n1 + n2 → n

n = n1 + n2

1.1 The typing relation

The presence of types does not alter the evaluation of an expression at all. So what use are types?
We will use types to restrict what expressions we will evaluate. Speciàcally, the type system for the

simply-typed lambda calculus will ensure that any well-typed program will not get stuck. A term e is stuck

1

if e is not a value and there is no term e′ such that e → e′. For example, the expression 42 + λx. x is stuck:
it attempts to add an integer and a function; it is not a value, and there is no operational rule that allows us
to reduce this expression. Another stuck expression is () 47, which attempts to apply the unit value to an
integer.

We introduce a relation (or judgment) over typing contexts (or type environments) Γ, expressions e, and
types τ . The judgment

Γ ⊢ e :τ

is read as “e has type τ in context Γ”.
A typing context is a sequence of variables and their types. In the typing judgment Γ ⊢ e : τ , we will

ensure that if x is a free variable of e, then Γ associates x with a type. We can view a typing context as a
partial function from variables to types. We will write Γ, x : τ or Γ[x 7→ τ] to indicate the typing context
that extends Γ by associating variable x with with type τ . The empty context is sometimes written ∅, or
often just not written at all. For example, we write ⊢ e : τ to mean that the closed term e has type τ under
the empty context.

Given a typing environment Γ and expression e, if there is some τ such that Γ ⊢ e : τ , we say that e is
well-typed under context Γ; if Γ is the empty context, we say e is well-typed.

We deàne the judgment Γ ⊢ e :τ inductively.

T-I
Γ ⊢ n : int

T-A
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int
T-U

Γ ⊢ () :unit

T-V
Γ ⊢ x :τ

Γ(x) = τ T-A
Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e :τ → τ ′
T-A

Γ ⊢ e1 :τ → τ ′ Γ ⊢ e2 :τ

Γ ⊢ e1 e2 :τ
′

An integer n always has type int. Expression e1 + e2 has type int if both e1 and e2 have type int. The
unit value () always has type unit.

Variable x has whatever type the context associates with x. Note that Γ must contain an associating
for x in order to the judgment Γ ⊢ x : τ to hold, that is, x ∈ dom(()Γ). The abstraction λx : τ. e has the
function type τ → τ ′ if the function body e has type τ ′ under the assumption that x has type τ . Finally,
an application e1 e2 has type τ ′ provided that e1 is a function of type τ → τ ′, and e2 is an argument of the
expected type, i.e., of type τ .

To type check an expression e, we attempt to construct a derivation of the judgment⊢ e :τ , for some type
τ . For example, consider the program (λx : int. x+ 40) 2. The following is a proof that (λx : int. x+ 40) 2
is well-typed.

T-A

T-A

T-A

T-V
x : int ⊢ x : int

T-I
x : int ⊢ 40: int

x : int ⊢ x+ 40: int

⊢ λx : int. x+ 40: int → int
T-I

⊢ 2: int

⊢ (λx : int. x+ 40) 2: int

1.2 Type soundness

We mentioned above that the type system ensures that any well-typed program does not get stuck. We can
state this property formally.

2

Theorem (Type soundness). If ⊢ e :τ and e →∗ e′ and e′ ̸→ then e′ is a value and ⊢ e′ :τ .

We will prove this theorem using two lemmas: preservation and progress. Intuitively, preservation says
that if an expression e is well-typed, and e can take a step to e′, then e′ is well-typed. That is, evaluation
preserves well-typedness. Progress says that if an expression e is well-typed, then either e is a value, or
there is an e′ such that e can take a step to e′. That is, well-typedness means that the expression cannot get
stuck. Together, these two lemmas sufàce to prove type soundness.

1.2.1 Preservation

Lemma (Preservation). If ⊢ e :τ and e → e′ then ⊢ e′ :τ .

Proof. Assume ⊢ e :τ and e → e′. We need to show ⊢ e′ :τ . We will do this by induction on the derivation
of e → e′.

Consider the last rule used in the derivation of e → e′.

• A

Here e ≡ n1 + n2, and e′ = n where n = n1 + n2, and τ = int. By the typing rule T-I, we have
⊢ e′ : int as required.

• β-

Here, e ≡ (λx : τ ′. e1) v and e′ ≡ e1{v/x}. Since e is well-typed, we have derivations showing
⊢ λx : τ ′. e1 : τ

′ → τ and ⊢ v : τ ′. There is only one typing rule for abstractions, T-A, from which
we know x :τ ′ ⊢ e1 :τ . By the substitution lemma (see below), we have ⊢ e1{v/x} :τ as required.

• C

Here, we have some context E such that e = E[e1] and e′ = E[e2] for some e1 and e2 such that
e1 → e2. Since e is well-typed, we can show by induction on the structure of E that ⊢ e1 : τ1 for
some τ1. By the inductive hypothesis, we thus have ⊢ e2 : τ1. By the context lemma (see below) we
have ⊢ E[e′] :τ as required.

Additional lemmas we used in the proof above.

Lemma (Substitution). If x :τ ′ ⊢ e :τ and ⊢ v :τ ′ then ⊢ e{v/x} :τ .

Lemma (Context). If ⊢ E[e] :τ and ⊢ e :τ ′ and ⊢ e′ :τ ′ then ⊢ E[e′] :τ .

1.2.2 Progress

Lemma (Progress). If ⊢ e :τ then either e is a value or there exists an e′ such that e → e′.

Proof. We proceed by induction on the derivation of ⊢ e :τ .

• T-V

This case is impossible, since a variable is not well-typed in the empty environment.

3

• T-U, T-I, T-A

Trivial, since e must be a value.

• T-A

Here e ≡ e1 + e2 and ⊢ ei : int for i ∈ {1, 2}. By the inductive hypothesis, for i ∈ {1, 2}, either ei is
a value or there is an e′i such that ei → e′i.

If e1 is not a value, then by C, e1 + e2 → e′1 + e2. If e1 is a value and e2 is not a value, then
by C, e1 + e2 → e1 + e′2. If e1 and e2 are values, then, it must be the case that they are both
integer literals, and so, by A, we have e1 + e2 → n where n equals e1 plus e2.

• T-A

Here e ≡ e1 e2 and ⊢ e1 : τ
′ → τ and ⊢ e1 : τ

′. By the inductive hypothesis, for i ∈ {1, 2}, either ei
is a value or there is an e′i such that ei → e′i.

If e1 is not a value, then by C, e1 e2 → e′1 e2. If e1 is a value and e2 is not a value, then by
C, e1 e2 → e1 e

′
2. If e1 and e2 are values, then, it must be the case that e1 is an abstraction

λx :τ ′. e′, and so, by β-, we have e1 e2 → e′{e2/x}.

Clearly, not all expressions in the untyped lambda calculus are well-typed. Indeed, type soundness
implies that any lambda calculus program that gets stuck is not well-typed. But are there programs that do
not get stuck that are not well-typed? Unfortunately, the answer is yes. In particular, because the simply-
typed lambda calculus requires us to specify a type for function arguments, any given function can only take
arguments of one type. Consider, for example, the identity function λx. x. This function may be applied to
any argument, and it will not get stuck. However, we must provide a type for the argument. If we specify
λx : int. x, then this function can only accept integers, and the program (λx : int. x) () is not well-typed,
even though it does not get stuck. Indeed, in the simply-typed lambda calculus, there is a different identity
function for each type.

4

