
.

. .
CS 4110 – Programming Languages and Logics
Lecture #13: λ-calculus

.

Lambda calculus (or λ-calculus) was introduced by Alonzo Church and Stephen Cole Kleene in the
1930s to describe functions in an unambiguous and compact manner. Many real languages are based on
the lambda calculus, including Lisp, Scheme, Haskell, and ML. A key characteristic of these languages is
that functions are values, just like integers and booleans are values: functions can be used as arguments to
functions, and can be returned from functions.

The name “lambda calculus” comes from the use of the Greek letter lambda (λ) in function de nitions.
(The letter lambda has no signi cance.) “Calculus” means a method of calculating by the symbolic manip-
ulation of expressions.

Intuitively, a function is a rule for determining a value from an argument. Some examples of functions
in mathematics are

f(x) = x3

g(y) = y3 − 2y2 + 5y − 6.

1 Syntax

The pure λ-calculus contains just function de nitions (called abstractions), variables, and function application
(i.e., applying a function to an argument). If we add additional data types and operations (such as integers
and addition), we have an applied λ-calculus. In the following text, we will sometimes assume that we have
integers and addition in order to give more intuitive examples.

The syntax of the pure λ-calculus is de ned as follows.

e ::= x variable

| λx. e abstraction

| e1 e2 application

An abstraction λx. e is a function: variable x is the argument, and expression e is the body of the function.
Note that the function λx. e doesn’t have a name. Assuming we have integers and arithmetic operations,
the expression λx. x2 is a function that takes an argument x and returns the square of x.

An application e1 e2 requires that e1 is (or evaluates to) a function, and then applies the function to
the expression e2. For example, (λx. x2) 5 is, intuitively, equal to 25, the result of applying the squaring
function λx. x2 to 5.

Here are some examples of lambda calculus expressions.

λx. x a lambda abstraction called the identity function
λx. (f (g x))) another abstraction
(λx. x) 42 an application
λy. λx. x an abstraction that ignores its argument and returns the identity function

1

Lambda expressions extend as far to the right as possible. For exampleλx. xλy. y is the same asλx. x (λy. y),
and is not the same as (λx. x) (λy. y). Application is left associative. For example e1 e2 e3 is the same as
(e1 e2) e3. In general, use parentheses to make the parsing of a lambda expression clear if you are in doubt.

1.1 Variable binding and α-equivalence

An occurrence of a variable in an expression is either bound or free. An occurrence of a variable x in a term
is bound if there is an enclosing λx. e; otherwise, it is free. A closed term is one in which all identi ers are
bound.

Consider the following term:
λx. (x (λy. y a) x) y

Both occurrences of x are bound, the rst occurrence of y is bound, the a is free, and the last y is also free,
since it is outside the scope of the λy.

If a program has some variables that are free, then you do not have a complete program as you do not
know what to do with the free variables. Hence, a well formed program in lambda calculus is a closed
term.

The symbol λ is a binding operator, as it binds a variable within some scope (i.e., some part of the expres-
sion): variable x is bound in e in the expression λx. e.

The name of bound variables is not important. Consider the mathematical integrals
∫ 7
0 x2dx and∫ 7

0 y2dy. They describe the same integral, even though one uses variable x and the other uses variable
y in their de nition. The meaning of these integrals is the same: the bound variable is just a placeholder.
In the same way, we can change the name of bound variables without changing the meaning of functions.
Thus λx. x is the same function as λy. y. Expressions e1 and e2 that differ only in the name of bound
variables are called α-equivalent, sometimes written e1 =α e2.

1.2 Higher-order functions

In lambda calculus, functions are values: functions can take functions as arguments and return functions
as results. In the pure lambda calculus, every value is a function, and every result is a function!

For example, the following function takes a function f as an argument, and applies it to the value 42.

λf. f 42

This function takes an argument v and returns a function that applies its own argument (a function) to
v.

λv. λf. (f v)

2 Semantics

2.1 β-equivalence

Application (λx. e1) e2 applies the function λx. e1 to e2. In some ways, we would like to regard the ex-
pression (λx. e1) e2 as equivalent to the expression e1 where every (free) occurrence of x is replaced with
e2. For example, we would like to regard (λx. x2) 5 as equivalent to 52.

We write e1{e2/x} to mean expression e1 with all free occurrences of x replaced with e2. There are
several different notations to express this substitution, including [x 7→ e2]e1 (used by Pierce), [e2/x]e1
(used by Mitchell), and e1[e2/x] (used by Winskel).

2

Using our notation, we would like expressions (λx. e1) e2 and e1{e2/x} to be equivalent.
We call this equivalence, between (λx. e1) e2 and e1{e2/x}, is calledβ-equivalence. Rewriting (λx. e1) e2

into e1{e2/x} is called a β-reduction. Given a lambda calculus expression, we may, in general, be able to
perform β-reductions. This corresponds to executing a lambda calculus expression.

There may be more than one possible way to β-reduce an expression. Consider, for example, (λx. x+
x) ((λy. y) 5). We could use β-reduction to get either ((λy. y) 5) + ((λy. y) 5) or (λx. x+ x) 5. The order
in which we perform β-reductions results in different semantics for the lambda calculus.

2.2 Call-by-value

Call-by-value (or CBV) semantics makes sure that functions are only called on values. That is, given an
application (λx. e1) e2, CBV semantics makes sure that e2 is a value before calling the function.

So, what is a value? In the pure lambda calculus, any abstraction is a value. Remember, an abstraction
λx. e is a function; in the pure lambda calculus, the only values are functions. In an applied lambda calculus
with integers and arithmetic operations, values also include integers. Intuitively, a value is an expression
that can not be reduced/executed/simpli ed any further.

We can give small step operational semantics for call-by-value execution of the lambda calculus. Here,
v can be instantiated with any value (e.g., a function).

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′
β-

(λx. e) v → e{v/x}

We can see from these rules that, given an application e1 e2, we rst evaluate e1 until it is a value, then
we evaluate e2 until it is a value, and then we apply the function to the value—a β-reduction.

Let’s consider some examples. (These examples use an applied lambda calculus that also includes
reduction rules for arithmetic expressions.)

(λx. λy. y x) (5 + 2) λx. x+ 1 →(λx. λy. y x) 7 λx. x+ 1

→(λy. y 7) λx. x+ 1

→(λx. x+ 1) 7

→7 + 1

→8

(λf. f 7) ((λx. x x) λy. y) →(λf. f 7) ((λy. y) (λy. y))

→(λf. f 7) (λy. y)

→(λy. y) 7

→7

2.3 Call-by-name

Call-by-name (or CBN) semantics applies the function as soon as possible. The small step operational se-
mantics are a little simpler, as they do not need to ensure that the expression to which a function is applied
is a value.

3

e1 → e′1
e1 e2 → e′1 e2

β-
(λx. e1) e2 → e1{e2/x}

Let’s consider the same examples we used for CBV.

(λx. λy. y x) (5 + 2) λx. x+ 1 →(λy. y (5 + 2)) λx. x+ 1

→(λx. x+ 1) (5 + 2)

→(5 + 2) + 1

→7 + 1

→8

(λf. f 7) ((λx. x x) λy. y) →((λx. x x) λy. y) 7

→((λy. y) (λy. y)) 7

→(λy. y) 7

→7

Note that the answers are the same, but the order of evaluation is different. (Later wewill see languages
where the order of evaluation is important, and may result in different answers.)

4

