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CS 4110 – Programming Languages and Logics
Lecture #9: Relative Completeness
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1 Relative Completeness

In the last lecture, we discussed the issue of completeness—i.e., whether it is possible to derive every valid
partial correctness speci cation using the axioms and rules of Hoare logic. Unfortunately, Hoare logic is
not complete. To see why, consider the following partial correctness speci cations:

{true} skip {P} {true} c {false}

The rst is valid if and only if the assertion P is valid while the second is valid if and only if the command
c does not halt.

It turns out that the culprit is the C rule,

C
� (P ⇒ P ′) {P ′} c {Q′} � (Q′ ⇒ Q)

{P} c {Q}

which includes two premises about the validity of implications between the assertions involved.
However, although we cannot decide validity, Hoare logic does enjoy the property stated in the follow-

ing theorem:

Theorem. ∀P,Q ∈ Assn, c ∈ Com. � {P} c {Q} implies ⊢ {P} c {Q}.

This result, due to Cook (1974), is known as the relative completeness of Hoare logic. It says that Hoare
logic is no more incomplete than the language of assertions—i.e., if we had an oracle that could decide the
validity of assertions, then we could decide the validity of partial correctness speci cations.

2 Weakest Liberal Preconditions

Cook’s proof of relative completeness depends on the notion of weakest liberal preconditions. Given a com-
mand c and apostconditionQ theweakest liberal precondition is theweakest assertionP such that {P} c {Q}
is a valid triple. Here, “weakest” means that any other valid precondition implies P . That is, P most accu-
rately describes input states for which c either does not terminate or ends up in a state satisfying Q.

Formally, an assertion P is a weakest liberal precondition of c and Q if:

∀σ, I. σ �I P ⇐⇒ (C[[c]] σ) unde ned ∨ (C[[c]]σ) �I Q

We write wlp(c,Q) for the weakest liberal precondition of command c and postcondition Q. From left-
to-right, the formula above states that wlp(c,Q) is a valid precondition: � {P} c {Q}. The right-to-left
implication says it is the weakest valid precondition: if another assertion R satis es � {R} c {Q}, then R
implies P . It can be shown that weakest liberal preconditions are unique modulo equivalence.
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We can calculate the weakest liberal precondition of a command as follows:

wlp(skip, P ) = P
wlp((x := a, P ) = P [a/x]
wlp((c1; c2), P ) = wlp(c1,wlp(c2, P ))

wlp(if b then c1 else c2, P ) = (b =⇒ wlp(c1, P )) ∧ (¬b =⇒ wlp(c2, P ))

The de nition of wlp(while b do c, P ) is slightly more complicated—it encodes the weakest liberal precon-
dition for each iteration of the loop. To give the intuition, rst de ne the weakest liberal precondition for a
loop that termintes in i steps as follows:

F0(P ) = true

Fi+1(P ) = (¬b =⇒ P ) ∧ (b =⇒ wlp(c, Fi(P )))

We can then express the weakest liberal precondition using an in nitary conjunction:

wlp(while b do c, P ) =
∧
i

Fi(P )

See Winskel Chapter 7 for the details of how to encode the weakest liberal precondition for a while loop as
an ordinary assertion.

To check that our de nition is correct, we can prove (how?) that it yields a valid partial correctness
speci cation:

Lemma 1.

∀c ∈ Com, Q ∈ Assn.
� {wlp(c,Q)} c {Q} and ∀R ∈ Assn. � {R} c {Q} implies (R =⇒ wlp(c,Q))

It is not hard to prove that it also yields a provable speci cation:

Lemma 2.
∀c ∈ Com, Q ∈ Assn. ⊢ {wlp(c,Q)} c {Q}

Relative completeness follows by a simple argument:

Proof Sketch. Let c be a command and let P and Q be assertions such that the partial correctness spec-
i cation {P} c {Q} is valid. By Lemma ?? we have � P =⇒ wlp(c,Q). By Lemma ?? we have
⊢ {wlp(c,Q)} c {Q}. We conclude ⊢ {P} c {Q} using the C rule.
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