
.

. .
CS 4110 – Programming Languages and Logics
Lecture #10: Axiomatic Semantics

.

1 Introduction to axiomatic semantics

Now we turn to the third and ànal main style of semantics, axiomatic semantics. The idea in axiomatic
semantics is to deàne meaning in terms of logical speciàcations that programs satisfy. This is in contrast
to operational models (which show how programs execute) and denotational models (which show what
programs compute). This approach to reasoning about programs and expressing program semantics was
originally proposed by Floyd and Hoare and was developed further by Dijkstra and Gries.

A common way to express program speciàcations is in terms of pre-conditions and post-conditions:

{Pre} c {Post}

where c is a program, andPre andPost are formulas that describe properties of the program state, usually
referred to as assertions. Such a triple is usually referred to as a partial correctness speciàcation (or sometimes
a “Hoare triple”) and has the following meaning:

“If Pre holds before executing c, and c terminates, then Post holds after c.”

In other words, if we start with a store σ in which Pre holds and the execution of c with respect to σ
terminates and yields a store σ′, then Post holds in store σ′.

Pre-conditions and post-conditions can be regarded as interfaces or contracts between the program and
its clients. They help users to understand what the program is supposed to yield without needing to un-
derstand how the program executes. Typically, programmers write them as comments for procedures and
functions as documentation and to make it easier to maintain programs. Such speciàcations are especially
useful for library functions for which the source code is often not available to the users. In this case, pre-
conditions and post-conditions serve as contracts between the library developers and users of the library.

However, there is no guarantee that pre-conditions andpost-conditionswritten informally in comments
are correct: the comments describe the intent of the developer, but they do not give a guarantee of correct-
ness. Axiomatic semantics addresses this problem. It shows how to rigorously describe partial correctness
statements and how to establish correctness using formal reasoning.

Note that partial correctness speciàcations don’t ensure that the program will terminate—this is why
they are called “partial”. In contrast, total correctness statements ensure that the program terminateswhenever
the precondition holds. Such statements are denoted using square brackets:

[Pre] c [Post]

meaning:

“If Pre holds before c then c will terminate and Post will hold after c.”

1

In general a pre-condition speciàes what the program expects before execution and the post-conditions
speciàes what guarantees the program provides (if the program terminates). Here is a simple example:

{foo = 0 ∧ bar = i} baz := 0;while foo ̸= bar do (baz := baz− 2; foo := foo+ 1) {baz = −2i}

It says that if the store maps foo to 0 and bar to i before execution, then, if the program terminates, the ànal
store will map baz to−2i (i.e.,−2 times the initial value of bar). Note that i is a logical variable that doesn’t
occur in the program and is only used to express the initial value of bar. Such variables are sometimes
called ghost variables.

This partial correctness statement is valid. That is, it is indeed the case that if we have any store σ such
that σ(foo) = 0, and

C[[baz := 0;while foo ̸= bar do (baz := baz− 2; foo := foo+ 1)]]σ = σ′,

then σ′(baz) = −2σ(bar).
Note that this is a partial correctness statement: if the pre-condition is true before c, and c terminates

then the post-condition holds after c. There are some initial stores for which the programwill not terminate.
The following total correctness statement is true.

[foo = 0 ∧ bar = i ∧ i ≥ 0] baz := 0;while foo ̸= bar do (baz := baz− 2; foo := foo+ 1) [baz = −2i]

That is, if we start with a store σ that maps foo to 0 and bar to a non-negative integer, then the execution of
the command will terminate in a ànal store σ′ with σ′(baz) = −2σ(bar).

The following partial correctness statement is not valid. (Why not?)

{foo = 0 ∧ bar = i} baz := 0;while foo ̸= bar do (baz := baz+ foo; foo := foo+ 1) {baz = i}

In the rest of our discussion of axiomatic semantics we will focus almost exclusively on partial correctness
assertions.

2 Assertions

Now we turn to the following issues:

• What logic do we use for writing assertions? That is, what can we express in pre-conditions and
post-condition?

• What does it mean that an assertion is valid? What does it mean that a partial correctness statement
{Pre} c {Post} is valid?

• How can we prove that a partial correctness statement is valid?

What can we say in pre-conditions and post-conditions? In the examples so far, we have used program
variables, equality, logical variables (e.g., i), and conjunction (∧). What we allow in pre-conditions and
post-conditions directly ináuences the sorts of programpropertieswe can describe using partial correctness
statements. We will use the set of logical formulas including comparisons between arithmetic expressions,

2

standard logical operators (and, or, implication, negation), as well as quantiàers (universal and existen-
tial). Assertions may also introduce logical variables that are different than the variables appearing in the
program.

i, j ∈ LVar

a ∈ Aexp ::=x | i | n | a1 + a2 | a1 × a2

P,Q ∈ Assn ::= true | false | a1 < a2 | P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2 | ¬P | ∀i. P | ∃i. P

Observe that the domain of boolean expressions Bexp is a subset of the domain of assertions. Notable
additions over the syntax of boolean expression are quantiàers (∀ and ∃). For instance, one can express the
fact that variable x divides variable y using existential quantiàcation: ∃i. x× i = y.

3 Satisfaction and Validity

Nowwewould like to describe what wemean by “assertion P holds in store σ′’. But to determine whether
P holds or not, we need more than just the store σ (which maps program variables to their values); we also
need to know the values of the logical variables. We describe those values using an interpretation I ,

I : LVar → Int,

and deàne the function Ai[[a]], which is like the denotation of expressions extended to logical variables in
the obvious way:

Ai[[n]](σ, I) = n

Ai[[x]](σ, I) = σ(x)

Ai[[i]](σ, I) = I(i)

Ai[[a1 + a2]](σ, I) = Ai[[a1]](σ, I) +Ai[[a2]](σ, I)

Now we can express the satisàability of assertions as a relation σ �I P read as “P is satisàed in store σ
under interpretation I ,” or “store σ satisàes assertion P under interpretation I .” We will write σ ̸�I P
whenever σ �I P doesn’t hold.

σ �I true (always)

σ �I a1 < a2 if Ai[[a1]](σ, I) < Ai[[a2]](σ, I)

σ �I P1 ∧ P2 if σ �I P1 and σ �I P2

σ �I P1 ∨ P2 if σ �I P1 or σ �I P2

σ �I P1 ⇒ P2 if s ̸�I P1 or σ �I P2

σ �I ¬P if s ̸�I P

σ �I ∀i. P if ∀k ∈ Int. σ �I[i7→k] P

σ �I ∃i. P if ∃k ∈ Int. σ �I[i7→k] P

We can now say that an assertionP is valid (written � P) if it is valid in any store, under any interpretation:
∀σ, I. σ �I P .

3

Having deàned validity for individual assertions, we now turn to partial correctness statements. We
say that a partial correctness statement {P} c {Q} is satisàed in store σ and interpretation I , written σ �I

{P} c {Q}, if:
∀σ′. if σ �I P and C[[c]]σ = σ′ then σ′ �I Q

Note that this deànition depends on the execution of c in the initial store σ.
Finally, we can say that a partial correctness triple is valid (written � {P} c {Q}), if it is valid in any

store and interpretation:
∀σ, I. σ �I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial correctness statement
{P} c {Q} is valid.”

4

